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Abstract

The accurate changepoint detection of different signal segments is a frequent challenge in a wide range of applications. With regard to
speech utterances, the changepoints are related to significant spectral changes, mostly represented by the borders between two phonemes.
The main aim of this study is to design a novel Bayesian autoregressive changepoint detector (BACD) and test its feasibility in the eval-
uation of fluency and articulatory disorders. The originality of the proposed method consists in its normalizing of a posteriori probability
using Bayesian evidence and designing a recursive algorithm for reliable practice. For further evaluation of the BACD, we used data
from (a) 118 people with various severity of stuttering to assess the extent of speech disfluency using a short reading passage, and (b)
24 patients with early Parkinson’s disease and 22 healthy speakers for evaluation of articulation accuracy using fast syllable repetition.
Subsequently, we designed two measures for each type of disorder. While speech disfluency has been related to greater distances between
spectral changes, inaccurate dysarthric articulation has instead been associated with lower spectral changes. These findings have been
confirmed by statistically significant differences, which were achieved in separating several degrees of disfluency and distinguishing
healthy from parkinsonian speakers. In addition, a significant correlation was found between the automatic assessment of speech fluency
and the judgment of human experts. In conclusion, the method proposed provides a cost-effective, easily applicable and freely available
evaluation of speech disorders, as well as other areas requiring reliable techniques for changepoint detection. In a more modest scope,
BACD may be used in diagnosis of disease severity, monitoring treatment, and support for therapist evaluation.
� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Communication disorders have a strongly negative effect
on our daily employment opportunities and everyday
social life. The cost of care, as well as the drastic limitation
of employment for people with speech disabilities, has a
major impact on national economies. These circumstances
indicate that communication disorders are one of the main
0167-6393/$ - see front matter � 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.specom.2012.08.003

⇑ Corresponding author. Address: Department of Circuit Theory,
Faculty of Electrical Engineering, Czech Technical University in Prague,
Technicka 2, 166 27 Prague 6, Czech Republic. Tel.: +420 224 352 236;
fax: +420 233 339 805.

E-mail address: cmejla@fel.cvut.cz (R. Cmejla).
medical challenges in the 21th century (Ruben, 2000).
Acoustic analysis has the potential to provide a quantita-
tive, objective, and precise tool to help depict the presence,
severity, and characteristics of speech disorders, and to
help the monitoring of deterioration or improvement in
speech according to the disease’s progression, recovery,
or treatment effects (Kent et al., 1999). Moreover, the inte-
gration of automated speech signal processing techniques
may significantly contribute to better rehabilitation for
such disorders, forming a useful biomarker for diagnosis
and remote monitoring of the disease (Harel et al., 2004),
as well as reducing the cost of care for affected persons
(Ruggiero et al., 1999).
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Among the most common manifestations of communi-
cation disorders are those related to stuttering and dysar-
thria. The first, stuttering, is a chronic speech disorder
characterized by repeated speech movements and fixed
articulatory postures, affecting the natural fluency of
speech production (Conture, 2001). Developmental stutter-
ing is a poorly understood communication disorder with a
prevalence of 5–15% in preschool children, typically start-
ing between 2 and 7 years of age (Yairi and Ambrose,
1999). Furthermore, stuttering is estimated to persist in
1% of the adult population. Second, Parkinson’s disease
(PD) is a chronic neurodegenerative disorder characterized
by progressive loss of dopaminergic neurons, affecting
1–2% of persons over the age of 60 years (Hornykiewicz,
1998; de Rijk et al., 1997). Patients with PD typically
develop alterations of speech, characterized as hypokinetic
dysarthria, that have been associated with a reduced range
of articulatory movements (Ackermann et al., 1997; Duffy,
2005). Although approximately 30% of affected patients
themselves regard the reduced ability to communicate as
one of their most difficult symptoms, only 3–4% patients
receive speech therapy (Hartelius and Svensson, 1994).

Diagnostic testing of pathological utterances and sever-
ity of speech intelligibility is traditionally based on percep-
tual evaluations by clinical experts (Hirano, 1981; Kent
et al., 1989; Robertson and Thompson, 1986; Dejonckere
et al., 2001). For this purpose, several evaluation scales
such as the Voice Handicap Index (Jacobson et al., 1997),
Stuttering Severity Instrument (Riley, 1972), and Dysar-
thria Rating Scale (Darley et al., 1969a,b) have been intro-
duced. Nevertheless, a certain extent of intra-rater
variability commonly occurs among experts in perceptible
speech ranking, and therefore overall assessment of the
vocal impairment is traditionally based on several indepen-
dent evaluators. Hence there is an urgent need for reliable,
automatic, and cost-effective objective methods to track the
severity of speech performances and provide feedback in
voice treatment. Currently, objective analyses of patholog-
ical speech are commonly performed using computer
programs. A well-known commercially available computer
system introduced by Kay Elemetrics Corp. provides sev-
eral measures for speech assessment in its Multi-Dimen-
sional Voice Program (Kay Elemetrics, 2003). As an
example of freely available software, PRAAT also offers
various voice and speech reports (Boersma and Weenink,
2001). However, these software packages mostly require
user control of the analysis procedure. Recently, a number
of studies have appeared making use of innovative methods
for voice and speech disorders detection on the basis of sig-
nal processing techniques (Sapir et al., 2010; Rusz et al.,
2011a), speech recognition (Middag et al., 2008; Su et al.,
2008), machine learning techniques (Godino-Llorente and
Gomez-Vilda, 2004; Henriquez et al., 2009), acoustic mod-
eling (Bocklet et al., 2012), as well as new automated soft-
ware (Maier et al., 2009).

When considering the precise evaluation of subjects’
speech performances, we have to keep in mind that the
speech signal consists of a sequence of segments that repre-
sent the individual phonemes of the utterances. Hence, we
can expect abnormalities in spectral changes between
phonemes in pathological utterances when compared to
healthy speech. From the standpoint of signal processing,
the borders between these phonemes are characterized by
significant changepoints. The process of changepoint detec-
tion was first introduced by (Basseville and Nikoforov,
(1993)), and it includes cumulative sum control charts
and likelihood tests. Changepoint analysis covers a broad
range of practical application domains such as meteorol-
ogy (Chu and Zhao, 2004), climatology (Reeves et al.,
2007), hydrology (Wong et al., 2006), history (Western
and Kleykamp, 2004), biomedicine (Prochazka et al.,
2008), astronomy (Dobigeon et al., 2005), process control
(Hawkins and Zamba, 2005), and telecommunications
(Ureten and Serinken, 1999). Generally, the main challenge
of changepoint detection lies in the accurate discovery of
points between segments with different statistical properties
(Cmejla and Sovka, 2001).

In this article, we introduce a novel recursive Bayesian
Autoregressive Changepoint Detector (BACD) for the
automated identification of signal changepoints. Subse-
quently, we test its reliability in the automatic evaluation
of speech disorders using data from two population groups
of people afflicted with stuttering and PD. Since the symp-
toms of both speech pathologies are quite different, we
demonstrate the potential of our detector regarding (a)
the separation of several degrees of speech disfluency with
motivation of support for therapeutic evaluation, and (b)
the articulation-based differentiation of parkinsonian
patients from healthy speakers with the possibility of mak-
ing an early diagnosis of the disease. In addition to these
applications, the recursive BACD is a suitable technique
for use in a number of other areas dealing with signal pro-
cessing applications. Furthermore, its code is freely avail-
able on http://sami.fel.cvut.cz/bacd/.

The outline of this paper is as follows. In the section
‘Methods’, we describe the speech data and participants,
detail the mathematical description of recursive BACD,
design the methods of fluency and articulation disorders
assessment, and explain the statistics used in this study.
The section ‘Results’ includes the results obtained. In the
section ‘Discussion’, we provide a discussion of our general
findings. Finally, the paper is concluded with a short
summary in the section ‘Conclusion’.

2. Methods

2.1. Fluency disorder: people with stuttering

During the last ten years, 118 Czech native speakers (90
men and 28 women) with different severity of disfluency
and stuttering were recruited. Their age ranged from 8 to
50 years (Mean = 18.1; SD = 9.9). All participants were
instructed to read a standardized short text of 75 words
(a paragraph from the classic Czech novel ‘Grandmother’
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by Bozena Nemcova). The recorded data were reported as
a part of a previous thesis (Bergl, 2010). The speech sam-
ples were recorded with a close-talking microphone at
44.1 kHz sampling frequency and 16 bit resolution.

In addition to the recording, the severity of speech disflu-
ency for each participant had been perceptually evaluated by
two independent professional speech-language pathologists.
A five-point rating scale comprised of severity levels 0
through 4, including 0 = normal healthy speech (without
frequent signs of disfluency), 1 = mild disfluency (approxi-
mately up to 5% of disfluent words), 2 = moderate disfluen-
cy (approximately 5–20% of disfluent words), 3 = severe
disfluency (approximately 20–60% of disfluent words), and
4 = very severe disfluency (more than 60% of disfluent
words) was applied to rate the relative frequency of disfluent
words in each recording. This scale has been adopted by
speech therapists in the Czech and Slovak Republic to assess
speech fluency (Lastovka et al., 1998; Lechta, 2004). To
ensure the correctness of clinical evaluation, the count of
disfluencies for each recording was also assessed using the
developmental stuttering taxonomy (Teesson et al., 2003).
The overall disfluency percentage was calculated as the total
number of disfluencies divided by the total number of words
and multiplied by 100. The Pearson correlation indicated
very high relationships between the overall disfluency per-
centage and the evaluation of the first (r = 0.92, p < 0.001)
and the second (r = 0.93, p < 0.001) speech therapists, as
well as very high inter-analyzer reliability (r = 0.91,
p < 0.001) between the evaluations of both therapists.
Therefore, both of the expert judgements were averaged
for further assessment. In case an ambiguous situation
occurred during evaluation, for example if the first expert
ranked subject performance as 2 and the second one as 3,
the higher degree of speech disfluency was retained. Accord-
ing to this evaluation scale, 15, 24, 41, 31, and 7 participants
were separated into the individual groups of 0, 1, 2, 3, and 4
respectively.

2.2. Articulatory disorder: people with PD

Data for assessment of articulation accuracy was used
from the original study (Rusz et al., 2011b), in which a
total of 46 Czech native participants were observed.
Twenty-four of them (20 men and 4 women) were newly
diagnosed with an early stage of idiopathic PD, before
the start of treatment with dopaminergic medication. Their
ages ranged from 34 to 83 years (Mean = 60.9; SD = 11.2),
with the duration of PD symptoms ranging from 6 to
84 months (Mean = 31.3; SD = 22.3), the Hoehn & Yahr
stage (disability scale comprised of stages 1–5, where 5 is
most severe) ranging from 1 to 3 (Mean = 2.2; SD = 0.5),
and the Unified PD Rating Scale III (motor rating scaled
from 108, where 108 represents severe motor impairment)
ranging from 5 to 32 (Mean = 17.4; SD = 7.1). In addition,
a healthy control (HC) group consisting of 15 men and 7
women of comparable age ranging from 40 to 91 years
(Mean = 58.7; SD = 14.6) was included. Each participant
was instructed to perform at least two times a diadochoki-
netic (DDK) task, which requires rapid steady /pa/-/ta/-/
ka/ syllable repetition as long and constantly as possible,
at least 5 times on one breath. A total of 116 vocal samples
were obtained (56 for PD and 60 for HC). The speech data
was recorded using an external condenser microphone
placed at approximately 15 cm from the mouth and cou-
pled to a Panasonic NV-GS 180 video camera. The voice
signals were sampled at 48 kHz, with 16-bit resolution.

2.3. The normalized recursive Bayesian autoregressive

changepoint detector

In this study, changepoint detection is based on autore-
gressive (AR) modeling, where prediction of the current
signal sample is generally expected from a linear combina-
tion of previous samples and additive white noise, which is
non-correlated with the normal distribution and zero mean
value. In other words, speech can be modeled by the piece-
wise autoregressive model which is characterized by abrupt
changes of its order and coefficients. Therefore, we further
assume that the signal is composed of two sections which
can be described by two different autoregressive models
evaluating the magnitude of the change, the left AR model
with M1 parameters ak and the right AR model with M2

parameters bk, i.e., Eq. (1)

x½n� ¼

PM1

k¼1ak � x½n� k� þ e½n�; pro n 6 m

\left" signal of AR order M1PM2

k¼1bk � x½n� k� þ e½n� pro n > m

\right" signal of AR order M2

8>>><
>>>:

n ¼ 1; � � � ;N ;

ð1Þ

where e[n] is zero mean noise, a and b are vectors of the
model parameters, and m is the changepoint position.

Furthermore, we assume a priori that all parameters are
equally likely. Using Bayesian marginalization, the param-
eters are integrated out, and therefore it is possible to find
the relationship for calculation of a posteriori probability
changes in the signal without the knowledge of any infor-
mation regarding the values of the noise level or the linear
coefficients (O Ruanaidh and Fitzgerald, 1996), i.e., Eq. (2)

pðfmgjx;MÞ � ðx
Tx� xTGAðGT

AGAÞ�1
GT

AxÞ
�ðN�MÞ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGT

AGAÞ
q ; ð2Þ

where m is the changepoint position, x is the column data
vector of length N with elements x[n], GA represents the
matrix of the basis function, and number of matrix col-
umns M depends on the AR model orders M1, M2

(M = M1+M2). Hence, the original derived relationship
(2) by O Ruanaidh and Fitzgerald (1996) introduced for
two piecewise linear models cannot be used if the signal
contains increased multiple changepoints. This limitation
is very restrictive in practice, since certain multiple change-
points have always been presented in speech utterances.
This disadvantage may be treated by calculating the poster-
ior probability in the sliding window.



Fig. 1. Principle of the normalized Bayesian changepoint detector.
Computing of a posteriori probability of changepoint position supposes
two piecewise AR models with the same length and Bayesian evidence
evaluation. Models are shifted with each new data sample in the sliding
window.
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As pointed out in (O Ruanaidh and Fitzgerald (1996)),
the posterior probability (2) is influenced only by the nom-
inator of the Bayesian formula because it is derived under
the condition that a given data segment is constant. Thus,
the Bayesian evidence in the denominator of Bayesian for-
mula is also constant. On the other hand, in the event that
the posterior probability (2) is repeatedly used for a seg-
mented signal, the data are not constant, and therefore
Bayesian evidence has to be used to normalize posterior
probability (Cmejla and Sovka, 2004), i.e., Eq. (3)

pðfmgjx;MÞ � ðx
Tx� xTGAðGT

AGAÞ�1
GT

AxÞ
�ðN�M1�M2Þ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGT

AGAÞ
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGT

EGEÞ
q

ðxTx� xTGEðGT
EGEÞ�1

GT
ExÞ

�ðN�M1Þ
2

; ð3Þ

where matrix GE consists of all segment samples without
the separation into the “left” and “right” parts. Use of
Bayesian evidence allows us to compare results between
different signal segments, which subsequently allow the for-
mation of the sliding window algorithm. This approach
overcomes the disadvantage of using the classical BACD
(2), which lies in its inability to compare results between
different signal segments.

Moreover, the usage of logarithms can suppress the
other negative aspects of numerical instability in the origi-
nal relationship (2). First, we neglect both determinants,
since their influence on the resulting probability density is
very small in comparison with other terms in the resulting
equation. Second, we omit multiplicative constants, which
originate from the application of logarithms on the basic
relationship (3). After using these two adjustments, we
obtain an expression for calculating the posterior probabil-
ity of the change position in the sliding window, i.e., Eq. (4)

pðfmgjx;MÞ � logðxTx� xTGEðGT
EGEÞ�1

GT
ExÞ � logðxTx� xTGAðGT

AGAÞ�1
GT

AxÞ
¼ logðxTx� fT

EfEÞ � logðxTx� fT
AfAÞ;

ð4Þ

where GA represents the matrix of basis function and GE

the matrix of Bayesian evidence. Subsequently, the general
linear model can be described using the formula
f ¼ G � b̂ ¼ G � ðGTGÞ�1

GTx. After multiplying the general
linear model by its transposition, we obtain the relation-
ship fTf ¼ xTG � ðGTGÞ�1

GTx. Fig. 1 shows the principle
of the designed BACD.

The most significant changes in the signal are deter-
mined by the maximum a posteriori probability of the
changepoint position. In our study, the tracking algorithm
for abrupt changes can be considered as Bayesian because
the result is a posteriori probability of the parameters
instead of a hypothesis test or an estimated value. As well
as other Bayesian methods, BACD requires subjective
prior probabilities. The resulting relationship is dependent
solely on samples of the input signal.
In Eq. (4), the term xTx represents the energy of the
speech signal while the term fTf demonstrates the energy
of the signal model, and therefore the difference of both
terms can be interpreted as the prediction error energy. If
we maximize the likelihood function for the general linear
model (detailed description can be found at page 17 in O
Ruanaidh and Fitzgerald (1996)), assuming uniform priors
of linear coefficients, we also obtain the expression xTx -
fTf, which represents the estimate of the variance indepen-
dent of the linear coefficients. Although the full derivation
of the detector was designed strictly on the basis of the
Bayesian approach, the resulting Eq. (4) can be seen within
the meaning of the criteria log likelihood ratio, where like-
lihood for the first model without change and likelihood
for the second model with one change are compared. A
similar approach can be found in (Ajmera et al., 2004),
where the number of parameters is the same in the numer-
ator and the denominator, and hence there is no need for
regularization in the likelihood test.

However, the calculation of the changepoint positions
places high demands on computation, which is the reason
behind the development of the recursive BACD algorithm.
The inputs of the recursive BACD include window length
and AR model order M = M1 + M2. A posteriori probabil-
ity p({m}|x, M) is computed for the changepoint position m

in the middle of the window length. A detailed mathemat-
ical description of recursive BACD as well as the GA and
GE matrixes can be found in Table 1. The algorithm code
in the �Matlab environment can also be found online on
http://sami.fel.cvut.cz/bacd/.

The recursive algorithm can be summarized as follows
(see Table 1 for details):

http://www.sami.fel.cvut.cz/bacd/


Table 1
The recursive Bayesian changepoint detection algorithm for the calculation of a posteriori probability in the middle of the window.

I. Adjustment of both initial matrix of basis function GA for changepoint m = N/2 and Bayesian evidence GE for normalized estimate
in window of the length wl, and initialization of energy D = xTx, correlation vectors gA = xTGA, gE = xTGE, and inverse of correlation matrices

UA ¼ GT
AGA

� ��1
, UE ¼ GT

EGE

� ��1
for changepoint position in the middle of the window.

GA ¼

x½0� x½�1� � � � 0 0 � � �
x½1� x½0� � � � 0 0 � � �
x½2� x½1� � � � 0 0 � � �
..
. ..

. . .
. ..

. ..
. . .

.

x½N=2� 1� x½N=2� 2� � � � 0 0 � � �
0 0 � � � x½N=2� x½N=2� 1� � � �
..
. ..

. . .
. ..

. ..
. . .

.

0 0 � � � x½N � 1� x½N � 2� � � �

2
666666666666664

3
777777777777775

GE ¼

x½0� x½�1� � � �
x½1� x½0� � � �
x½2� x½1� � � �
..
. ..

.
� � �

x½N=2� 1� x½N=2� 2� � � �
x½N=2� x½N=2� 1� � � �
..
. ..

.
� � �

x½N � 1� x½N � 2� � � �

2
6666666666664

3
7777777777775

II. Updating data
A. New observed signal sample xnew (in the end of the window wl)

GAnew ¼ ½0 0 � � �|fflfflffl{zfflfflffl}
M1

xnew xnew�1 � � �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
M2

�, Dnew = D + (xnew)2, w1 ¼ UAGT
Anew

,

gAnew
¼ gA þ xnew GAnew , k ¼ 1þGAnew w1, UAnew ¼ UA � w1k

�1wT
1

B. Removing old sample (in the begin of the window)

Z ¼ ½xnew�wl�1 xnew�wl�2 � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M1

0 � � �|ffl{zffl}
M2

�,Dnew2 = Dnew - (xnew-wl)
2, w2 ¼ UAnewZT, k ¼ 1� Z w2,

gAnew2
¼ gAnew

� xnew�wl Z, UAnew2
¼ UAnew þ w2k

�1wT
2

III. Position update (in the middle of the window wl/2)
A. Replacing with row of zeros
R ¼ ½0 0 � � �|fflfflffl{zfflfflffl}

M1

xnew�wl=2 xnew�wl=2�1 � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M2

�, gAnew3
¼ gAnew2

� xnew�wl=2 R,

w3 ¼ UAnew2RT, k ¼ 1� R w3, UAnew3
¼ UAnew2

þ w3 k�1wT
3

B. Replacing with new data
Q ¼ ½xnew�wl=2 xnew�wl=2�1 � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M1

0 0 � � �|fflfflffl{zfflfflffl}
M2

�, gAnew4
¼ gAnew3

� xnew�wl=2 Q

w4 ¼ UAnew3QT, k ¼ 1� R w4, UAnew4
¼ UAnew3

þ w4 k�1wT
4

IV. Bayesian evidence update
A. Adding new sample

GEnew ¼ ½xnew xnew�1 � � �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ðM1þM2Þ=2

�, gEnew
¼ gE þ xnew GEnew , wE ¼ UEGT

Enew
,

k ¼ 1þGEnew wE, UEnew ¼ UE � wE k�1wT
E,

B. Removing old sample

ZE ¼ ½xnew�wl xnew�wl�1 � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðM1þM2Þ=2

�, gEnew2
¼ gEnew þ xnew ZE, wE2

¼ UEZT
E,

k ¼ 1� ZEnew wE, UEnew ¼ UE þ wE k�1wT
E2

V. Calculate changepoint position probabilities

p mf gjd;Mð Þ � log Dnew2 � gEnew2
UEnew2

gT
Enew2

� �
� log Dnew2 � gAnew4

UAnew4
gT

Anew4

� �

VI. Return to II. for new sample x and compute new change position m + 1
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I. First, the initial matrices of basis function GA and
Bayesian evidence GE for changepoint position in
the middle of the window are assembled. Subse-
quently, the signal energy, correlation vectors, and
inverse of correlation matrices are computed.

II. The designed recursive algorithm is initiated at this
point. First, a new sample of the observed signal is
added to the end of the window (II.A.). An increase
in the quantity of data leads to an increase in the
number of rows in matrices GA. Second, we have to
update key matrix terms through extension of the
matrices. Third, the old sample at the beginning of
the window has to be removed (II.B.) and key matrix
terms must be updated again.
III. In this step, the position in the middle of the window
for the subsequent new sample will be updated.
Updating is carried out in two stages. The first
stage consists in replacing the m-th row of GA with
a row of zeroes R. The second stage then consists
in replacing the row of zeros introduced into
GA with the matrix Q and modifying all relevant
terms.

IV. In this step, the new sample must be added for Bayes-
ian evidence (IV.A.), while the old sample has to be
removed (IV.B.), and the terms updated.

V. Finally, having modified all the relevant terms, the
logarithm of posterior density is computed for a
new data sample and a new changepoint position.
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Fig. 3. Principle of the algorithm for the abrupt change detector. (a)
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recursive Bayesian changepoint detector filtered through a low pass filter;
(c) Candidates for abrupt changes; (d) Abrupt changes retained; (e)
Abrupt changes highlighted in the speech spectrogram.
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VI. For computing the posterior density of the newly
observed speech sample x and the new changepoint
position m + 1, we have to return to step II.

2.4. Assessment of fluency disorder

In typical disfluent speech, when compared to the same
utterance by a healthy person, there are more silences and
irregular prolongations, which are demonstrated by the
decreasing number of spectral changes per time unit. Thus,
we can assume that the number of spectral changes in the
speech signal will decrease with respect to the severity of
speech disfluency. In contrast, the variability of distances
between individual spectral changes will increase as a con-
sequence of the higher degree of disfluency. Based upon
these assumptions, we introduce two novel measurements
of speech disfluency. The extent of speech fluency (ESF) is
calculated as the overall number of spectral changes
divided by the entire duration of the speech sample. The
speech fluency variability (SFV) is determined as a loga-
rithm of standard deviation applied to the distances
between two following spectral changes. In this case, our
motivation behind using the logarithm results from the fol-
lowing phenomena. First, there are general suggestions in
the literature that a number of speech features are better
represented in the logarithmic domain (see for example
Asgari and Shafran, 2010a). Second, perceptual judge-
ments performed by the experts show a logarithmic depen-
dence with respect to the severity of speech disfluency. The
effectiveness of using a logarithm is highlighted by Fig. 2,
which shows a nonlinear relationship between the number
of disfluencies and the corresponding class according to the
clinical experts’ evaluation.

Although we can expect a large number of smaller local
maxima representing spectral changes from the typical out-
put of the BACD, only abrupt changes can be considered
Fig. 2. The black line shows the logarithmic relationship between the
number of disfluencies and the corresponding class according to the
clinical experts’ judgement. The blue lines represent individual classes
related to the severity of disfluency. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
as significant. Therefore, a robust detector of abrupt
changes is introduced for tracking the severity of speech
disfluency. Fig. 3 shows the individual steps describing
the algorithm for the abrupt change detector. First, the
speech signal (see Fig. 3a) is down-sampled to 16 kHz
and the output obtained from the normalized recursive
BACD is filtered by a low-pass filter with a break
frequency at 20 Hz. As a result, we gain the smooth filtered
signal of the BACD output (see Fig. 3b). Second, the local
minima of the BACD output are calculated and candidates
of abrupt changes are then detected as the local maxima
between two consecutive minima in the appropriate
segments (see Fig. 3c). However, as we mentioned earlier,
not every detected maximum necessarily corresponds to
an abrupt change. Thus, as we will discuss further, there
is a need to set up a threshold distinguishing abrupt
changes from other, in this case insignificant changes.
Finally, the significant abrupt changes retained for evalua-
tion are those candidates greater than the threshold (see
Fig. 3d). Fig. 3e shows the final output of the abrupt
change detector plotted in the spectrogram of speech
utterance.
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Nevertheless, analyses performed with different speakers
indicate that the amplitude of abrupt change candidates is
quite variable. From this point of view, it is better to use
the adaptive threshold for each speaker separately. In addi-
tion, we need to find the optimal input parameters of
BACD including window length and AR model order.
All those parameters can be obtained experimentally with
the guidance of clinical ratings validated by developmental
stuttering taxonomy. Fig. 4 shows the motivation behind
the selection of representative parameter values. The
threshold was calculated as a fraction from the k-th maxi-
mum peak of global BACD output and multiplication con-
stant. Fig. 4 above shows the Pearson correlation between
perceptual evaluations by experts and both measures (ESF
and SFV) for different defined constants. The vertical axis
represents the order of greatest detected maximum and
horizontal axis represents multiplication constants (from
0.1 to 0.3) of k-th maximum peaks. As can be seen, the
most significant correlation coefficients exceeding the value
of 0.77 are illustrated by a white surface. In this case, the
greatest coefficient of 0.78 was found for the fourth maxi-
mum and multiplication constant of 0.15. Subsequently,
these values were set up as the adaptive threshold. Almost
the identical procedure is applied to find the optimal win-
dow length and AR model order for the input of the
BACD. Fig. 4 below shows the relationships between per-
ceptual evaluations by experts and both measures for dif-
ferent window lengths and AR model orders. The testing
range was set up from 2 to 10 with a step of 2 for the
AR model order, and from 30 ms to 120 ms with a step
of 10 ms for window length. As the result with the best clas-
sification performance, the sixth order of AR model (M1,
M2 = 6) and the window length of 60 ms were used for fur-
ther analysis.

2.5. Assessment of articulatory disorder

As opposed to speech disfluency, dysarthria is associated
with imprecise articulation, which can be demonstrated by
means of lower spectral changes. Therefore, more accurate
speech articulation is expected to correspond with greater
spectral changes as a consequence of consonant-to-vowel
alteration. In other words, a posteriori probabilities of
change positions are more proportional to the spectral dis-
tance between two adjacent segments, and therefore repre-
sent greater clarity of articulation. Thus, on the basis of the
output of normalized recursive BACD, we are able to
define parameters useful in the assessment of dysarthric
speech. The consonant-to-vowel transition accuracy (CVTA)
is computed as the mean of all spectral changes provided
by BACD output. The consonant-to-vowel variability

(CVV) is performed as a logarithm of standard deviation
of all spectral changes. Fig. 5 shows a sample of PD and
HC speech performance extracted from /pa/-/ta/-/ka/ syl-
lable repetition using normalized recursive BACD.

Similarly to measurements of speech fluency, we need to
find the optimal BACD input parameters of window length
and AR model order. These parameters were obtained
experimentally using the similar principle mentioned in
Section 2.4. Analysis of variance (ANOVA) was applied
to find the most significant differences between the PD
and HC groups for a different set-up of window length
and AR model order. The testing values ranged from 2
to 10 with a step of 2 for the AR model order, and from
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Table 2
List of results of both fluency measures (ESF and SFV) with mean, SD
values, and statistical significances according to the ANOVA with
comparisons between groups by post hoc Bonferroni adjustment.

ESF (1/s) SFV (�)

Mean ± SD Mean ± SD

Normal healthy speech (0) 352.6 ± 92.5 2.89 ± 0.19
Mild disfluency (1) 295.3 ± 89.5 3.02 ± 0.20
Moderate disfluency (2) 245.6 ± 78.7 3.16 ± 0.20
Severe disfluency (3) 197.0 ± 47.1 3.26 ± 0.17
Very severe disfluency (4) 158.2 ± 44.1 3.60 ± 0.35

Comparison between the groups

ANOVA F(4, 117) = 38.3* F(4, 117) = 35.7*

0 vs. 1 NS NS
1 vs. 2 p < 0.001 p < 0.01
2 vs. 3 p < 0.001 p < 0.001
3 vs. 4 NS NS

NS = not significant.
* p < 0.001.
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5 ms to 40 ms with a step of 5 ms for window length. Using
the above-mentioned principle, the sixth order of AR
model (M1, M2 = 6) and window length of 20 ms was used
for further analysis.
2.6. Statistics

Differences between groups (degrees of speech fluency
and PD vs. HC subjects) were statistically compared using
the ANOVA with post hoc Bonferroni adjustment for each
acoustic variable (ESF and SFV for fluency disorders
and CVTA and CVV for articulation disorders). The
Kolmogorov–Smirnov test was used to test for the normal-
ity of the distribution of the data. As the acoustic variables
showed a Gaussian distribution, the relationships between
the acoustic variables as well as between expert evaluations
and measurements of speech fluency were assessed using
the Pearson product-moment correlation. The level of sig-
nificance was set at p < 0.05.
3. Results

3.1. Assessment of fluency disorder

Table 2 details the results of the speech fluency investi-
gations. As can be seen from Fig. 6, the number of signif-
icant spectral changes represented by ESF decreases as the
severity of speech disfluency increases. In contrast, the



Table 3
List of results for both articulation measures (CVTA and CVV) with
mean, SD values, and statistical significances according to the ANOVA
with comparison between groups by post hoc Bonferroni adjustment.

CVTA (�) CVV (�)

Mean ± SD Mean ± SD

PD 0.15 ± 0.04 �0.80 ± 0.13
HC 0.18 ± 0.03 �0.68 ± 0.07

Comparison between the groups

ANOVA F(1, 115) = 35.5* F(1, 115) = 33.1*

PD vs. HC p < 0.001 p < 0.001

* p < 0.001.
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Fig. 7. Boxplots of new articulatory parameters including consonant-to-
vowel transition accuracy (CVTA) and consonant-to-vowel variability
(CVV) for differentiation between PD and HC groups.
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variability of distances between spectral changes expressed
by SFV is increased with respect to degree of disfluency.

Statistically significant differences according to ANOVA
were found between the five degrees of disfluency for both
measures of ESF [F(4, 117) = 38.3, p < 0.001] and SFV
[F(4, 117) = 35.7, p < 0.001]. A post hoc Bonferroni adjust-
ment indicated significant differences between mild and
moderate degrees of disfluency (1 vs. 2) for both measures
(ESF, p < 0.001; SFV, p < 0.01) and also between moderate
and severe degrees of disfluency (2 vs. 3) for both measures
(ESF, p < 0.001; SFV, p < 0.001). The relationships
between the measures of speech disfluency and expert eval-
uations were found to be significant, with high correlations
for ESF (r = �0.75, p < 0.001) and SFV (r = 0.74,
p < 0.001). A significant correlation was also found
between ESF and SFV (r = �0.89, p < 0.001).

3.2. Assessment of articulatory disorder

Table 3 lists the detailed results of articulatory disorders
assessment. Fig. 7 shows that people with PD exhibit
more inaccurate consonant-to-vowel articulation when
compared to HC subjects. These differences are accurately
captured by the measures of CVTA and CVV.

ANOVA showed statistically significant differences for
both articulatory measures of CVTA [F(1, 115) = 35.5,
p < 0.001] and CVV [F(1, 115) = 33.1, p < 0.001]. A post

hoc Bonferroni adjustment indicated a significant difference
between the PD and HC groups for both measurements
(CVTA, p < 0.001; CVV, p < 0.001). The correlation
between CVTA and CVV was found to be statistically sig-
nificant (r = 0.77, p < 0.001).

4. Discussion

In this study, we present a novel, robust changepoint
detection with application for automatic assessment of flu-
ency and articulatory disorders. This method extends the
standard usage of Bayesian changepoint detection, which
is included in many different digital signal processing tasks.
The originality of the modification consists in its normaliz-
ing of a posteriori probability using Bayesian evidence,
which allows for easy processing of signals using a sliding
window. Furthermore, the method is implemented in a
recursive algorithm for practical use.

To show the reliability of the proposed BACD method
in speech pathology assessment, we have tested our detec-
tor on two types of central nervous system disorders,
including people with stuttering and PD. Although the
speech was affected in two different ways in dependence
on the type of disorder, our method showed its power to
evaluate and differentiate various degrees of speech impair-
ment. The stuttering group is represented by a wide range
of speech performances, including participants with almost
no signs up to severe levels of disfluency. Here, we have
shown the efficiency of the BACD in the estimation of dis-
fluency severity, which could be useful in support for ther-
apists’ evaluation as well as feedback in speech treatment
(Van Borsel et al., 2003). On the other hand, in the PD
dataset, the patients were newly diagnosed with an early
stage of the disease, and most of them with only mildly
impaired speech. In this case, on the basis of articulation
measures, we demonstrated the suitability of BACD in
catching even small alterations of speech and distinguish-
ing PD patients from healthy speakers, with the motivation
of potential early diagnosis, essential in improving the life
of such affected persons (Singh et al., 2007).

To ensure comparable results, we have chosen two stan-
dard procedures such as text reading and fast syllable rep-
etition (DDK task) commonly used in speech pathology
assessment. Subsequently, the need emerged for a valid ref-
erence with respect to evaluation of our method. Thus, the
degree of speech disfluency was audited by the independent
perceptual ranking of two experts with a very good inter-
rater reliability. Nevertheless, to reduce the subjectivity in
data and ensure the independency of designed parameters,
the overall disfluency percentage was calculated in order to
create a reliable score, which was treated as an appropriate
reference with a highly significant relationship to the
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clinical ratings (p < 0.001). In addition, the mean of both
experts was computed to reduce the raters’ subjectivity
and obtain a final score for further evaluation. As a result,
our speech fluency measures based on BACD were signifi-
cantly correlated (p < 0.001) with the perceptual judgement
performed by the speech therapists. In the case of the artic-
ulation disorder, the assessment by experts was not per-
formed because minor dysarthria-related speech changes
during fast syllable repetition captures by BACD were
hardly evaluable by standard perceptible tests.

When assessing the group differences between dysarthric
and healthy speakers, individuals with PD were found to
demonstrate a significant reduction in consonant-to-vowel
articulation performance compared with healthy speakers
(p < 0. 001). On the other hand, in the stuttering group,
we were only able to find a significant separation (p < 0.
01) the mild to severe levels of disfluency (1 vs. 2 vs. 3),
while differences between healthy to mild (0 vs. 1) and
severe to very severe (3 vs. 4) levels of disfluency were
not found to be statistically significant. In the first case,
the underlying reason could be the small difference between
healthy to mild levels of disfluency, because even healthy
people commonly exhibit some disfluencies (Goberman
et al., 2010), making both groups hard to separate by per-
ceptual ranking. In the second case, only 7 participants
were categorized at the very severe stage of disfluency,
which could result in a low separable performance for
our method. Finally, although the correlations between
two fluency measures as well as between the two articula-
tion measures were found to be highly significant
(p < 0.001), each measure represents one certain aspect of
speech. All these aspects in total could then increase the
overall accuracy of evaluation performance.

In general, our changepoint detection algorithm has
been designed for automatic acoustic assessment of voice
pathology with respect to the relevance of changes in spec-
tral discontinuity and the spectral envelope of the speech
signal. Accordingly, considerable effort has been invested
in the previous literature towards the development of meth-
ods allowing for extraction of relevant speech features from
pathological utterances. Some authors have noted the ben-
efits of parameters extracted from speech in predicting the
average symptom severity of PD (Asgari and Shafran
2010a; Asgari and Shafran 2010b; Tsanas et al., 2011). Pre-
vious studies have also revealed that people with hypoki-
netic dysarthria can be distinguished from healthy
speakers on the basis of spectral changes (Rosen et al.,
2006). Moreover, in accordance with our findings, the
degree of spectral change has been shown to be higher dur-
ing clear speech, which among other aspects is associated
with more precise articulation (Rosen et al., 2011). In the
domain of stuttering disfluencies, several researchers have
designed automatic recognition stuttering systems mostly
based upon Hidden Markov Models and Mel Frequency
Cepstral Coefficients approaches (Noth et al., 2000;
Wisniewski et al., 2007; Ravikumar et al. 2009; Hariharan
et al., 2012). Although the classification performance of
approximately 80–90% of these stuttering-related systems
is very promising, changepoint detection could be helpful
in providing more insights related to the progression of
various speech disorders without requiring a speech recog-
nizer optimized for the given task. Finally, there are also
several software packages allowing detection of voice
segments. The most popular of them include PRAAT
(Boersma and Weenink, 2001), WaveSurfer (Sjolander
and Beskow, 2000), and openSMILE (Eyben et al., 2010).
These software packages offer the extraction of various
speech-related features such as jitter, shimmer, noise-to-
harmonics ratios, signal energy, loudness, cepstral coeffi-
cients, pitch, formants, linear predictive coding, line spec-
tral pairs, zero-crossing, sound annotation/transcriptions,
and many others. Thus, there is a great opportunity to
use these features in speech pathology assessment which
could yield the design of parameters measuring similar
aspects of speech as presented in this study. However, to
the best of our knowledge, there is no widely-used
speech-analysis software that has implemented change-
point detection.

Although we have shown the wide range of possible
applications of changepoint detection in the area of speech
pathology, the problem of reliable changepoint detection
has attracted much interest in other research fields using
several varying divergence metrics. Several comparisons
with other divergence metric based approaches have
already been reported in our previous research (Bergl,
2006; Bergl and Cmejla, 2007). These comparisons were
based upon two experiments using synthetic and real
speech signals. First, the experiment performed on syn-
thetic AR signals with sliding windows (Bergl, 2006)
includes detection of abrupt changes with an increasing
value of spectral divergence (single boundary) and pairs
of abrupt changes with increasing distances (multiple
boundaries). In this experiment, our BACD method and
General Likelihood Ratio distance (Appel and Brandt,
1983) have reached excellent results for the detection of
both single and multiple boundaries. Similarly, Kullback–
Leiber divergence (Couvreur and Boite, 1999) and the
Mahalanobis distance (Sooful and Botha, 2001) were able
to detect a single boundary very accurately while failing
to detect multiple boundaries. The poor quality of detec-
tion can be the result of not using the AR model. On the
other hand, this aspect might be an advantage for analysis
of real signals, which can be hardly described by the AR
model. Second, in the experiment using real speech signals
(Bergl and Cmejla, 2007), Kullback–Leibler divergence has
been proven to be the best method for finding boundaries
between vowels and nasals, while other detectors including
the Bhattacharyya divergence (Mak and Barnard, 1996),
L2 metric (Sooful and Botha, 2001), and Jeffreys-Matusita
measure (Sooful and Botha, 2001), have a tendency to miss
vowel-nasals boundaries. Abrupt changes between vowel
and silence were detectable by most of the above-men-
tioned detectors, but the best results were achieved using
Bhattacharyya divergence. While most detectors react in
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the occlusion–burst context, our BACD was the best
method for precise detection of the burst–vowel and frica-
tive–vowel boundaries. The underlying reason could be
caused by the fact that AR models are considerably more
accurate for vowels than for silence.

We believe that the designed BACD will be important
for several reasons. It can be helpful in diagnosis of the dis-
ease, classifying the severity of disease, monitoring treat-
ment, and support for therapists in the evaluation. In
other words, it can be easily included in the rising need
for telemedicine approaches to provide useful information
for therapists and patients without the need for clinical vis-
its. Hence, usage of the tool such as BACD may result in
the improvement of patients’ health and quality of their life
as well as in lowering the cost of treatment. In addition, the
BACD can be widely used in a number of other areas
requiring reliable signal processing techniques for change-
point detection. Moreover, the BACD is a freely available
code that can be downloaded from the project homepage
on http://sami.fel.cvut.cz/bacd/.

5. Conclusion

The BACD-based measurements were able to make a
significant differentiation of the various degrees of speech
disfluency as well as articulation deficits in mild dysarthria
levels. Admittedly, the measures of speech fluency were in
agreement with perceptual evaluation by the speech
experts. To summarize, our method provides a cost-effec-
tive, easily applicable, freely available, and objective assess-
ment of fluency and articulatory disorders. Future research
could extend this technology for use in additional practical
applications.
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