Biophysics of the cochlea: Linear approximation
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Several deficiencies affecting previous “box” models of the cochlea are overcome in this paper.
Both mechanical and hydrodynamical aspects are treated at a level adequate to the complexity
of realistic cochlear structures. The dynamics of the cochlea as a passive physical system, in the
linear approximation, is described by an integral equation. It is further shown that this equation
describes the properties of the working cochlea, provided a force term that accounts for hair cell
motility is included. Numerical solutions for different degrees of outer hair cells activity,
obtained by matrix methods in the frequency domain, are presented. Amplitudes and phases of
the computer-simulated traveling waves are in fair agreement with basilar membrane responses

to tones measured in various experimental conditions.

"PACS numbers: 43.64.Kc, 43.64.Bt, 43.64.Ld

INTRODUCTION

Frequency selectivity of the cochlea is determined by
the graded elastic properties of the cochlear partition,
which are mainly due to the fibers embedded in the basilar
membrane {BM). In this paper, the direction of the BM
fibers will be referred to as radial, whereas that of the
coiling axis of the cochlea as longitudinal. The direction
and the plane orthogonal to the BM will be referred to as
vertical and transversal, respectively. In the following we
will mainly refer to the guinea-pig cochlea, which has a
trumpetlike longitudinal cross section, as can be inferred
from Fig. 1(a) (most of the relevant background material
on cochlear anatomy and physiology can be found in Pick-
les, 1988; and de Boer, 1980, 1984, and 1991).

The organ of Corti is a set of adjacent segments about
10 um long formed by transversal portions of the.cochlear
partition and spanning the entire length of the BM. Each
segment hosts a triplet of outer hair cells (OHCs) and 0.9
inner hair cells on average (Iurato, 1961). Possessing
mass, stiffness, and viscosity, these segments form local
oscillators vibrating in transversal planes and longitudi-
nally coupled mainly by the pressure field of the fluid filling
the scalae. The relative importance of other coupling terms
depends upon the stiffness characteristics of the reticular
lamina (RL) and the tectorial membrane (TM), as well as
upon the viscosity of the supporting tissues. As the BM
displacements at moderate sound-pressure levels (SPLs)
are in the range of a few nanometers (Sellick et al, 1982;
Robles et al., 1986), elastic longitudinal coupling will be
neglected on account of longitudinal flexibility and lack of
longitudinal tension of the RL and the TM (se¢ Appendix
B). However, longitudinal coupling due to the shearing
resistance between adjacent segments of the organ of Corti
will be included, as there is no obvious reason to neglect it.
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Since the BM displacements are very small, such are

‘also the velocity field of the cochlear fluid and its gradient

[about 4X 107> m/s at 10 dB SPL, according to Sellick
et al. (1982)]. So, in the first part of this paper, the cochlea
is described, within the limits of the linear approximation,
as a system of damped oscillators interacting locally by vis-
cous forces and driven by pressure differences across the
BM (passive cochlea).

In the second part, the description is expanded to ac-
count for recent experimental evidence showing that a
physiologically vulnerable mechanism, generally referred
to as the “cochlear amplifier,” causes the BM to be far
more sharply tuned than reported by von Békésy (1960),
particularly for near-threshold stimuli (Davis, 1983; de
Boer, 1983). The cochlear amplifier is thought to sharpen
the resonance of the cochlea by reducing the inherent
damping of the cochlear partition (Ashmore, 1987; Pick-
les, 1988; de Boer, 1991). An indirect evidence that this is
indeed the case is probably provided by the existence of

. cochlear echoes (Kemp, 1978; Wilson, 1980), which seem

to indicate that the BM responses to sound in vivo occur at
the threshold of spontaneous oscillations in a wide fre-
quency range. Hence, in the working cochlea the energy
dissipation affecting passive dynamics is almost uniformly
neutralized but not overcompensated by the action of the
cochlear amplifier (active cochlea). The link between co-
chlear amplifier and OHC motility is examined in Secs. IV
and V.

l. PASSIVE COCHLEAR MECHANICS

For the sake of formal clarity, the BM will be de-
scribed as a continuum rather than a discrete collection of
segments. Hence, the segment lengths are regarded as in-
finitesimal and the local force terms affecting the motion of
the BM have the dimension of force per unit length.

Assuming that all such force terms depend linearly on
the vertical displacements of the cochlear segments and
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FIG. 1. (a) Cross-section area of the uncoiled guinea-pig cochlea. (b)
Width of the basilar membrane of the guinea-pig cochlea (both from
Fernandez, 1952).

their time derivatives, the motion equation of the BM for
the passive cochlea is

m(x)PE(x,1) +h(X)IE(x,t) + [3,5(x) 3, 19,£ (x,1)
+k(x)&(x,t) =Fs(x) +Fgy(x), (1)

where x€[0,1] is the normalized BM coordinate in the lon-
gitudinal direction (x=0 and x=1 are the abscissas of the
stapes and the helicotrema, respectively), ¢ is time, £(x,?)
is the vertical displacement of the BM, d, is the partial
derivative after x, and d, is the partial derivative after ¢
Fg(x) and Fpy(x) are the external forces acting upon the
segment at x due to the fluid pressure differences across the
BM, as discussed at the end of this section. Local coeffi-
cients m(x), h(x), s(x), and k(x) are discussed in the
following term-by-term analysis of Eq. (1).

The mechanical inertial term:

m(x)PE(x,2), , )

accounting for the local inertial reaction of the organ of
Corti, where m(x) is the mass per unit length (kg/m) of

the organ of Corti. We assume that m(x) is proportional to

the BM width 5(x) [Fig. 1(b)] multiplied by the thickness
of the organ of Corti {Fig. 2(a)].
The fluid viscosity term:
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FIG. 2. Relevant physical quantities of the cochlear partition, all defined
per unit length: (a) mass m(x); (b) fluid viscosity coefficient hix); ()
shearing r_esistance coefficient s(x); and (d) stiffness k(x).
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h(x)3&(x,1),

where coefficient A(x) (kg/m s) accounts for all resis-
tances affecting the absolute vertical motion of the organ of
Corti. A simple dimensional computation shows that be-
low 20 dB SPL the Reynolds numbers associated with the
motion of the different parts of the cochlear system are
smaller than 15 in the cochlear duct and smaller than 0.01
in the narrow cleft (1-5 um) separating the RL from the
TM. Hence, the fluid dynamics is simply affected by vis-
cous forces in laminar regime. As the resistance due to the
shearing motion of the fluid within the RL-TM cleft is at
least two orders of magnitude larger than all the others
(although the motion is contrasted by the elastic reaction -
of the OHC stereocilia), A(x) can be expressed as

h(x) =7.[b.(x)/€e(x)]sin 6(x), (3)

where 7,=1.5X 107 kg/m s is the endolymph viscosity
(von Békésy, 1960), b.(x) is the radial width of the cleft,
€(x) the effective cleft height, and 6(x) the angle formed
by the TM and BM rotating planes [as the relative shearing
displacement between the RL and the TM is
&(x,t)sin 6(x)). Taking 100 um for 5.(0), 0.5 um for the
effective €(0) and 6(0) =45°, we estimate #(0)=0.16
kg/m s. As the width/height ratio of the cleft decreases by
about five times from base to apex and 6(x) by about 1.3
times, we assume A(x) to vary along the cochlea, as shown
in Fig. 2(b). -

The shearmg resistance term:

[8.5(x)8,18£&(x.1), o 4)

where s(x) =7S,(x) (kg m/s), 7, being the average shear-
ing viscosity coefficient of an organ-of-Corti section and
S,(x) the effective area of the section at x. Although ex-
perimental values for 7, are lacking, because of the TM
peculiar ultrastructure the resistance due to the shearing
motion between adjacent segments of the organ of Corti is
likely to be dominated by the internal viscosity of the TM
(Hasko and Richardson, 1988). Basing upon dimensional
considerations about the fibril structure of the TM matrix,
we estimated 7,~10X 7. Since the TM is moderately ta-
pered, we assume s(x) as represented in Fig. 2(c).

The fiber stiffness term:

k(x)é(x,1),

where k(x) (kg/m %) is the elastic constant of the co-
chlear partition with respect to vertical displacement of the
BM at x; k(x) receives contributions from the BM fibers,
the OHC cytoskeletons (Sec. III), and the limbus-TM~
stereocilia-RL system (Sec. IV). It was measured by
Gummer et al. (1981) in the guinea pig, in the proximity
of the site at 1.64 mm from the stapes, using probes with a
25-um tip diameter. They reported a stiffness plateau upon
contacting the BM that usually persisted over the first 2 to
3 um of static BM displacement, at values 0.34+0.12
N/m. They also reported the plateau stiffness to decrease

" with increasing distance from the stapes with a space con-

stant of 1.7+0.8 mm and extrapolated a mean plateau
value of 1.25 N/m at the stapes. But determining the stiff-
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ness by a thin-probe technique yields values underesti-
mated by about a factor of 2 with respect to the effective
stiffness of the working cochlea. This is because a point
load stretches the membrane differently from a uniform
pressure. We have reproduced the frequency map of the
guinea-pig cochlea (Greenwood, 1990) by assuming k(x)
=k(0) X 10™>** [Fig. 2(d)], where k(0) =~2 X 10° kg/m s
well within the experimental error limits. The exponent 3.5
of k(x) is 1.5 units less than that usually assumed in
former theoretical treatments.

The stapes force term:

Fs(x,t) = —Gs(x)da(1), (5)

representing the force per unit BM length caused by the
stapes motion and transmitted by the fluid to a BM seg-
ment at x. Here, o(¢) is the stapes displacement at time ¢.
As discussed in Appendix A, the stapes force propagator
Gyg(x), which has the dimensions of mass per unit length,
gives the force per unit length caused by the unit stapes
acceleration and acting on the BM site at x.

The BM force term:

1
Fom(x)=— fo GlxD)FE(E1dF, 6)

where G(x,X) is the Green’s function of the fluid pressure
field over the BM and has the dimensions of mass per unit
area; G(x,X)dx gives the force contribution per unit BM
length at site x caused by the unit acceleration of the dx-
long BM segment at X. .So Fpy(x,?) represents the force
per unit BM length acting on the BM at x due to the
motion of all the BM segments and simultaneously trans-
mitted by the fluid (see Appendix A). This is by far the
most important coupling term affecting the dynamics of
the cochlear partition.

In order to overcome the deficiencies of previous
“box” models, formal expressions and numerical approxi-
mations for functions Gg(x) and G(x,X) are derived in
Appendix A for a guinea-pig cochlea with realistic geom-
etry. [Note: In some of the formulas above, the BM width
b(x) is implicitly involved. Since the BM is laterally
clamped,-its vertical displacements are obviously nonuni-
form across the radial direction. As a result of the peculiar
articulation of the organ of Corti segments (see Fig. 5), we
shall assume for the effective width 5(x) half the geometric
width.]

Il. RESULTS I: TRAVELING WAVES IN THE PASSIVE
COCHLEA '

Denoting by a,, the Fourier transform of a generic time
function a(t) and separating the nonhomogeneous term
representing the signal at the stapes from the homogeneous
terms depending upon £(x,t), the Fourier-transformed ver-
sion of Eq. (1) is B

1 —~ —~
—mz( fo G(x,f)éw(f)df+m(x)§w(x))+iwh(x)

+iw[axS(x)éx]Ew(ka(x)gw(")
=0Gs(x) @), €
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2 Passive travelling waves at constant stapes displacement
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FIG. 3. Traveling wave elicited on the basilar membrane of a passive
cochlea by a 3200-Hz sinusoidal vibrations of the stapes (tone), com-
puted as solution of Eq. (9) by numerical inversion of the kernel in Eq.
(8) over a 180-points equally spaced grid. (a) Dashed line: real part;
dash-dot line: imaginary part; solid line: absolute value. (b) Phase. The
abscissa is the normalized basilar membrane coordinate; x=0 corre-
sponds to the location of the stapes, x=1 to the helicotrema.

This equation can be cast in a compact form by defining
the kernel

K, (x,%)=[k(x) +iwh(x) —0*m(x)]6(x—X)
| 4ied [s(x)38(x—%)] —*G(x,E), (8)

where 6(x—X) is Dirac’s delta, which yields the motion
equation in the purely integral form:

1 ~
[, Kt EtD s =0t G501, 9

Equation (9) can be solved for £,(x) by numerical inver-
sion of the kernel. Its complex solutions for fixed frequency
o give amplitude and phase of the displacement profiles of
the BM. As the phase turns out to be a decreasing mono-
tonic function of x (Fig. 3) these solutions represent trav-
eling waves (TWs).

In a cochlea with uniform section, the TW amplitudes
would scale to a good approximation as K% (x)/h(x), ie.,
about 30 times from base to apex. The TW amplitudes at
constant stapes displacement shown in Fig. 4(a) turn out
to be comparatively more uniform over a large fraction of
the cochlear length. The moderate variability of the TW
shapes is a consequence of the peculiar geometry of the
cochlear duct and the BM width profile. At constant stapes
velocity [Fig. 4(b)] the TW amplitudes scale with fre-
quency in agreement with the pattern shown by Eldredge
(1975). Figure 4 also shows that the BM site where a TW
reaches its peak is linked to the stimulation frequency by a
logarithmic law. Therefore, Eq. (9) accounts for the fono-
topic organization of the responses of the passive cochlea.
Note also that the TW amplitude should not vanish at the
helicotrema limit if the BM has a free edge. In our simu-
lations low-frequency TWs undergo a small amount of
free-end reflection. -

. Nobili and F. Mammano: Linear cochlea model 3322



4 Passive travelling waves at constant stapes displacement
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FIG. 4. Traveling waves of the passive cochlea computed as solution of
Eq. (9) over a 180-points equally spaced grid for a set of frequencies
ordered in a decreasing geometric progression from left to right. (a)
Amplitude envelopes at constant stapes displacement; numbers above am-
plitude peaks indicate tone frequencies. Ordinates are expressed as ratios
between basilar membrane displacement and stapes displacement. (b)
Amplitude envelopes at constant stapes velocity. Ordinates are expressed
as ratios between basilar membrane displacement and stapes velocity. (c)
Phases at constant stapes velocity. Phases at constant displacement lag
those at constant velocity by /2 and are always negative.

111. INTRODUCING OUTER HAIR CELLS

Unlike other cells of the cochlea, OHCs isolated in
vitro contract if depolarized and elongate if hyperpolarized
by amounts so large that the motion can be observed with
a light microscope (Brownell et al, 1985). In natural con-
ditions, these motile responses are thought to be elicited by
the deflection of the sensory hair bundles (stereocilia) sur-
mounting the OHCs (Hudspeth, 1989). OHCs respond to
command pulses under voltage clamp by changing length
with a very fast exponential time course, having a charac-
teristic time constant of about 0.6 us per pm cell length
with a mean peak sensitivity of about 20 nm/mV; maximal
length changes amount to 4% to 5% of the cell length
(Ashmore, 1987). The speed of the motile response en-
sures that OHCs can operate at acoustic frequencies;
length changes have been observed for sinusoidal stimuli at
~ frequencies as high as 30 kHz (Gitter and Zenner, 1988).

Measurements of longitudinal mechanical stiffness of
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isolated OHCs (Holley and Ashmore, 1988) indicate that
the OHC spring-shaped cytoskeletons are stiff enough for
the motile responses to transmit forces capable of affecting
the mechanics of the organ of Corti. To explain how these
forces operate, we shall assume that OHCs are always un-
der tension in normal working conditions. Were the OHC
membrane potentials held fixed at their working points,
OHC cytoskeletons would simply provide an additive con-
tribution to the mechanical stiffness of the cochlear parti-
tion and, in static conditions, the system would be found in
a certain equilibrium configuration. Since the additional
force provided by the OHCs depends, other things being
equal, upon the cell resting length, which in turn depends
upon the membrane potential, changing the latter elicits a
force tending to change proportionally the equilibrium
conditions. Therefore, when the cell electromotility is
taken into account, an active force term dependent upon
the OHC length changes must be included in the dynamics
of the cochlear partition. '

IV. THE OUTER HAIR CELL FORCE TERM U, (x) .

In this section a precise functional form for the force
associated with OHC motility will be established by ana-
lyzing their transduction properties and triggering mecha-
nism.

A. Outer hair cells and organ of Corti micromechanics

Consider the hypothetical case that the organ of Corti
is initially at rest and the OHCs are suddenly depolarized.
In these conditions, with the organ of Corti subjected only
to internal forces, the tunnel of Corti rotates toward scala
tympani (downward) as the cells contract pulling the RL
toward the BM. The rotation is imposed by the rigidity of
the framework formed by the RL and the tunnel of Corti
itself, which pivots around the base of the inner pillar cells
(Fig. 5). Conversely, for the same initial conditions, the
tunnel of Corti rotates toward scala media (upward) if the
OHCs are hyperpolarized for, in this case, the RL is
pushed away from the BM as the OHCs elongate. The
configuration of the applied forces is such that the BM
tract between the outermost OHC row and the spiral
prominence undergoes comparatively small displacements
(see inset of Fig. 5). T

Consider now the effects of external forces (pressure
differences) that induce movements of the BM, for in-
stance foward scala media. These cause the deflection of
the OHC stereocilia, thought to be firmly attached to the
undersurface of the TM (Lim, 1986), in the excitatory
direction. This is a consequence of the shearing displace-

" ment of the TM with respect to the RL caused by rotation

of the tunnel of Corti (Davis, 1958). A transduction cur-
rent proportional to the deflection of the stereocilia (i.e., to
the BM displacement) depolarizes the cells (Russell ez al.,
1986) and, according to the mechanism illustrated above,
an internal force proportional to the BM displacement will
then pull the organ of Corti back, toward scala tympani. As
the opposite happens when the BM moves toward scala
tympani, the effect is always such as to oppose its cause.
Therefore, in static conditions, i.e., in the zero-frequency
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FIG. 5. Contraction of the outer hair cells forces the tunnel of Corti to
rotate toward scala tympani (downward). The tunnel pivots approxi-
mately about the point indicated by the vertical arrow. The opposite
motion is caused by outer hair cells elongation, with the tunnel rotating
toward scala media (upward). This is due to the considerable transversal
rigidity of the framework formed by the reticular lamina and the pillar
cells. But, as the reticular lamina rotates downward (upward), the tec-
torial membrane shears with respect to it. The stereocilia of the hair cells
are deflected in the inhibitory (excitatory) direction, thus forcing the cells
to elongate (contract). Since the effect is always such as to oppose its
cause, the system admits a state of equilibrium at an intermediate degree
of cell contraction. This way, the fibers of the basilar membrane are kept
under tension at rest. :

limit, the system admits a state of equilibrium at an inter-
mediate degree of OHC contraction. This way, the fibers of
the BM are maintained under tension, conceivably at the
early stiffness plateau described by Gummer et al. (1981)
and Olson and Mountain (1991). Owing to the presence of
the plateau, the effective stiffness £(x) of the partition in
vivo (which includes the stiffness of the OHC cytoskele-
tons) keeps largely independent of cell resting length, thus
ensuring the frequency stability of cochlear responses. In
the following, the static effect of the OHC force term will
be implicitly accounted for by the maintenance of the elas-
tic reaction of the partition at constant plateau values for
k(x). '

In dynamic conditions the OHC resting length is sub-
jected to variations depending upon the cell membrane po-
tential. Precisely these variations affect the dynamics of the
system producing a frequency-dependent undamping term
U,(x) as a pseudoelastic force term, i.e., a term propor-
tional to the elastic reaction k(x)£,(x) of the BM, to be
added to the lhs of Eq. (7) with a positive sign. In order to
establish the frequency dependence of U,(x), the filtering
properties of the OHC membrane must be taken into ac-
count.

B. Outer hair cells as low-pass filters

Intracellular measurements of the OHC receptor po-
tential recorded in vivo in response to tones both in the
apical (Dallos, 1985) and the basal end of the cochlea

(Cody and Russell, 1987) indicate that the OHC mem-

brane behaves as a simple RC filter with cutoff frequency

below 1 kHz. More accurate estimates of the RC cutoffs, .
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derived from experiments on isolated cells, show cutoffs
varying from 400 Hz at the base to 15 Hz at the apex
(Ashmore and Housley, 1992). As the cell length changes
are voltage driven (Ashmore, 1990), the undamping term
must be of the type

U, (x) =a(x)k(x)I(x) [V, (x)/ V], (10)

where a(x) is an adimensional constant smaller than 1,
which accounts for the fraction of k(x) contributed by the
OHC cytoskeletons, /(x) is the cell length (in meters),
f"',‘,(x) the Fourier-transformed receptor potential of the
OHC s (in volts), and constant ¥=2.55 V is the potential
sensitivity of the length change (Ashmore, 1987; Eq. 4, p.
343). V,(x) is in turn related to the Fourier-transformed
transducer current /,(x) (in amperes) by the equation

Ccli(x) -~

Vw(X)=m1m(X), (11)
where C(x)=Cyl(x) is the cell capacitance (in farads)
and Cy=0.9 pF/m; o (x) is the cutoff frequency of the
OHCs at x (in rad/s). In agreement with Housley and

Ashmore’s data, we put
wc(x)=wg exp(—¥x); wo=2mX400 rad/s;
y=3.28. (12)

From the little that is known about mammalian OHC
transdqcer currents, in the linear approximation [, (x) is
conceivably linked to the stereocilia deflection £,(x) (in
meters) by a relationship of the type

I,(x)=E7gr(x)€,(x), (13)

where E;=~ 160 mV is the driving potential and g#(x) (in
siemens/m) the transducer conductance per unit stereo-

. cilia deflection (not experimentally determined, to date).

The above equation chain yields

)z 14

U,(x) = o) Lo Sol(x), (14)
where

n(x)=(Er/CoVolgr(x)a(x)k(x). (15)

Notwithstanding the small value of wy in (12), the maxi-
mum frequencies in the guinea pig cochlea are as high as
44 kHz (Greenwood, 1990). This seemingly requires
§,(x) to increase appreciably with frequency in order for
U,(x) to be effective. To explain how the correct fre-
quency dependence is achieved in the cochlea, the coupling
between hair cells and tectorial membrane must be taken
into account.

C. Stereocilia stiffness and the tectorial membrane

Basing upon measurements in turns 2, 3, and 4 of the
isolated guinea-pig cochlea by Strelioff and Flock (1984),
Strelioff er al. (1985) estimated that the combined hair-\
bundle stiffness of an OHC triplet is larger than 1 N/m at :
the base [comparable to 0.5 N/m for the stiffness of the |-
cochlear partition at the base estimated by Gummer ez al.
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(1981) for a 10-um BM segment] and decreases exponen-
tially by two to three orders of magnitude from base to
apex, giving a range of 10°-10° kg/m s? for the stereocilia
stiffness per unit length along the cochlea. Hypothesizing
that the stiffness of the TM attachment to the limbus is
considerably smaller than the cell hair-bundle stiffness,
they concluded from these data that each triplet and its
overlying TM segment form a resonant mechanical system
operating in the audio range and tuned to the local char-
acteristic frequency of the BM. Thus the TM segment
would provide the mass and the cell hair bundles elasticity
for simple harmonic motion parallel to the reticular lam-
ina.

From static measurements in a living cochlea per-
formed by Zwislocki et al (1988), de Boer (1991) con-
cluded that the stiffness of the TM attachment to the lim-
bus is approximately one-seventh of the value measured for
the cilia, which confirms the above assumptions. Thus the
TM possesses essentially two degrees of freedom: one ro-
tational around the limbus, the other translational in the
radial direction. Since the TM is strongly bound to the RL
by the stiff OHC stereocilia, the motion of the TM with
respect to the RL is a shearing with two independent com-
ponents. The first one, associated with the rotational de-
gree of freedom, originates from the coordinated rotations
of the TM and the tunnel of Corti around their respective
pivoting axes, and therefore depends only upon geometric
constraints. The second one, associated with the transla-
tional degree of freedom, is elicited by the first component
in dynamic regimes as a side effect of the TM inertia. The
possibility for the TM~OHC system to display a resonant
behavior relies upon the second effect.

D. The inertial reaction of the tectorial membrane

Actually, Strelioff et al’s conjecture meets a difficulty
because the point-by-point correspondence between the
TM-OHC resonances and the BM characteristic frequen-
cies vanishes progressively toward the apical end of the
cochlea, where they differ by at least one order of magni-
tude (as evidenced in Fig. 4 of their paper). Moreover, as
stressed by de Boer (1991), it is likely that the stereocilia
stiffness in the working cochlea has been underestimated.
Considering that the TM oscillations are strongly damped
by the TM-RL cleft viscosity, it seems more likely that the
transfer-function poles of the oscillating TM segments fall
on the frequency complex plane far from the characteristic
frequencies of the corresponding BM sites. So the radial
motion of the TM relative to the RL is likely to play an
important role in enhancing the frequency dependence -of
the OHC triggering mechanism without generating tuned
secondary resonances, as explained hereafter.

Consider a harmonic oscillator (not subjected to grav-
itational forces, for the sake of simplicity) formed by a
spring with stiffness k and damping constant h, attached to
a point mass m at one end. Let £(#) and n(t) be the
extreme coordinates of the spring, and assume that E(2) is
a prescribed function of ¢, while 7(¢) is the coordinate of
the point-mass following the system dynamics. Defining
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the spring elongation as §(?) =mn(£) —£(¢), the motion
equation is

mé () +hE(8) +kE (1) =—mE(D),

where the dot notation indicates time derivatives.
The Fourier transform of £(¢) is

co2m

§w=k+iwh_wm§w’ . (16)

where Fourier-transformed quantities are represented as
usual.

We use this model to simulate the dynamics of the
TM-stereocilia-RL system overlying an organ-of-Corti
segment interpreting: £, as the displacement £,(x) of the
BM segment at X; £, as the corresponding radial displace-
ment £,(x) (m) of the TM with respect to the RL, i.e., the
stereocilia deflection; k as the stiffness per unit BM length
of the hair bundle triplets k(x) (kg/m s?); h and m, re-
spectively, as the TM-RL cleft resistance k(x) (kg/m s)
and the mass my(x) (kg/m) of the TM at x.

Putting together Eq. (14) and Eq. (16) reinterpreted
as described above, the undamping term becomes

U,(x)

w*n(x)
=Tk.(x)/my(x) +ioh(x)/my(x) —*] [0(x) +io]

X Ea(x)- (17

Supposing that Strelioff and Flock’s data are underes-
timated by a factor of 2, k(x) can be assumed to range
from about 4 10° kg/m s at the base to about 10° kg/m
s? at the apex. On account of the rather uniform cross
section of the TM, the mass term m(x) can be assumed to
be approximately constant (ms,:,-EI.S)(lO”6 kg/m). The
damping factor A,(x) is essentially equal to A(x) and
should vary from about 0.16 kg/m s at the base to about
0.075 kg/m s at the apex. So, with a characteristic fre-
quency @(0) =2.75X 10° rad/s at the base and @ (1) =1.25
% 10° rad/s at the apex, we find

ky(0) »h(0)w(0); k(1)>h(1)a(l)

and
k,(0) > mw*(0); k(1)>m@*(1).

Therefore, in a wide enough frequency range between
0,(0) and [k,(0)/m]"%, the undamping term U,(x) can
be approximated by

v _n(x)m; ~
Ua,(x)z—ta)-—————ks(x) E,(x).

(18).
This relationship indicates that, owing to the large values
of the stereocilia stiffness k,(x), the key factor in enhanc-
ing the frequency dependence of the OHCs triggering
mechanism is the inertial reaction of the TM.
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FIG. 6. Resonance frequencies (solid line) and damping coefficient
(dashed line) of the tectorial membrane radial motion, compared to the
characteristic frequencies of the active cochlea (dash-dot line).

V. ACTIVE COCHLEAR DYNAMICS

The velocity dependence of the viscous forces inherent
in the cochlear partition can be compensated in an optimal
way if the forces applied by OHCs are in phase
with and proportional to the BM velocity. For frequencies
that are neither too low nor too high, the approximation
in Eq. (18) holds. Therefore, term iwh(x)£,(x). in
Eq. (7), describing the fluid viscosity of the partition, can
be almost uniformly canceled over the whole cochlear
length, provided »

B (x) =n(x)my/ky(x) =h(x). (19)

The cancellation, and therefore the undamping effect of
U,(x), will be only partial both at very low and very high
frequencies where the approximation in (18) breaks down.
Of course, the shearing resistance term cannot be canceled
by U,(x), but its damping effect can be contrasted if 4’ (x)
exceeds uniformly A(x) by a small amount.

Recalling the expression of n(x) in (15), it is readily
appreciated that, for Eq. (19) to hold, product a(x)gr(x)
must scale precisely as #(x)k,(x)/k(x), which amounts to
about 23 times from base to apex. Although currently
available data are insufficient to establish the scaling prop-
erties of gr(x) and a(x), such figure does not seem to
exceed physiological limits. Assuming the validity of Eq.
(19), the OHC’s undamping term becomes

U,(x)
_ a)zh’(x).
T [14iwy(x)/0X(x) —0¥/0} (x) ] [0.(x) +io]

X E,(%), (20)
where resonance frequencies w,(x) =[ks(x)/mx]1/ 2 and
damping coefficient y(x) =h(x)/m; are shown in Fig. 6.
By including this term into the kernel of the passive co-
chlea, the equation for the active cochlea can be put in the
form '
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The effect of shearing resistance -
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FIG. 7. By the effect of the shearing resistance s(x) the traveling wave
peak is smoothed and strongly depressed. To restore the peak size, the
outer hair cell activity parameter A needs to be somewhat increased.
(a) Dashed line: A=1.1, s(x) =0; (b) dash-dot line: A=1.1, s(x) = 10~1°
kg m/s; (c) solid line: A=1.34, s(x) =107 kg m/s. Tone frequency is
the same as in Fig. 3. Notice that in (a) damping is not completely
compensated despite A is greater than 1 because of the small contribution
to the overall partition damping from the tectorial membrane.

f 1 Hm(x,f)Em(f)d:z:wzc;s(x)a'(m), (21)
0 .

where

Hw(x,f)eKw(x,f)M(x—f) U (x). -

| Vi RESULTS HH TRAVELING WAVES IN THE ACTIVE

COCHLEA

Numerical solutions of Eq. (21), characterized by the
rise of marked peaks, were obtained as in the passive case
by inversion of the integral kernel with A’(x)=AA(x) in
Eq. (20), where A€[0,1+c] is a parameter introduced in
order to control the amount of residual damping (c is a
small positive number). It represents the degree of effi-
ciency of the OHC motile responses for, the closer A to 1,
the better damping due to the fluid viscosity is canceled. A
certain overcompensation, represented by ¢, is needed for
contrasting also the resistance due to the shearing motion
between adjacent segments of the organ of Corti, as well as
the TM impedance. As mentioned in the previous section,
the shearing resistance term cannot be canceled by this
procedure. But, being small, it is effective only for vanish-
ing wavelengths of the TW amplitudes, i.e., on the falling
edge of the TW. As shown in Fig. 7, it produces a marked
smoothing of TW peaks. Since damping is compensated
without violating the stability conditions of the system, the
structural stability of the cochlear function is guaranteed.

A set of TW with inclusion of OHCs, to be compared
to those in Fig. 4, are shown in Fig. 8. Isoamplitude tuning
curves, as defined in Sellick ez al. (1983), and respective
phases are compared to experimental data in Figs. 9 and
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Active travelling waves at constant stapes displacement
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FIG. 8. Traveling waves elicited on the active basilar membrane by sinu-
soidal vibrations of the stapes, computed as solutions of Eq. (21) for
A=1.35. All others parameters have the same values used in Fig. 4.
(a) Amplitude envelopes at constant stapes displacement. Numbers
above wave peaks indicate tone frequencies. Ordinates are expressed as
ratios between basilar membrane displacement and stapes displacement.
(b) Amplitude envelopes at constant stapes velocity. Ordinates are ex-
pressed as ratios between basilar membrane displacement and stapes ve-

locity. (c) Phases at constant stapes velocity. The abscissa represents the

normalized basilar membrane coordinate. Quantization errors associated
with the peaked character of these solutions were overcome by introduc-
ing a variably spaced grid for the matrix representation of the integral
kernel, which increased the density of grid points in the peak region by a
factor up to 60. The overall number of points was maintained about 200,
which kept the C.P.U. time within reasonable limits (approximately 4
min per traveling wave on a 386 P.C.). The shape of the maximum-
amplitude profile is sensitive to the tectorial membrane mass m,(x) and
the exponent of the stereocilia stiffness k,(x) (see Sec. IV) although the
local resonances of the tectorial membrane are severely damped by the
viscosity in the cleft separating the membrane from the reticular lamina,
and lie far from the corresponding characteristic frequencies of the basilar
membrane.

10, where the effect of decreasing the efficiency of OHC
motility was simulated by decreasing A from 1.34 (active
case) to zero (passive case).

VIl. DISCUSSION

As is well known, the main problem concerning the

effectiveness of outer hair cells in enhancing to an extraor-
dinary level the frequency selectivity of the cochlea lies in
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BM-displ/Stapes-displ. tuning curves at 18 kHz CF
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FIG. 9. Isovelocity tuning curves for a few values of the damping-control
parameter A: A=1.34 (solid line); A=1.25 (dash-dot line); A=0 (dashed
line). Tuning curves were generated by solving Eq. (21) for a number of
different frequencies, i.c., producing a family of TWs, and selecting am-
plitudes and phases at a fixed BM site x for each frequency value. Stars
{*) and opens symbols (O) data from and Sellick er al (1983).

that these cells behave as mechanical effectors with low-
pass filter characteristics. The cutoff frequencies of the
outer hair cell membrane are below 400 Hz. On the other
hand, cutoffs much higher than those observed would be
incompatible with the constraints imposed by the physics
of biological systems. Thus, in the absence of suitable com-
pensatory effects, the voltage-controlled motile responses
of outer hair cells would be negligible for frequencies above
approximately 1 kHz. :
We envisaged the cunning solution by which nature
has been able to circumvent this difficulty in the inertial
reaction of the tectorial membrane that makes the trigger-
ing mechanism of outer hair cells increase as the square of
frequency over a wide frequency range provided the reso-

Velocity phasc-lag at 18 kHz CF

Phase {rad}

0 0.5 1 1.5 2 2.5 3
Frequency (kHz] xi04
FIG. 10. Velocity phase lag of the tuning curves shown in Fig. 9 for the

same values of the damping-control parameter. Open symbols (O): data
from Sellick er al. (1983). .

R. Nobili and F. Mammano: Linear cochiea model 3327



nances of the tectorial membrane are smooth and fall ap-
preciably beyond the corresponding characteristic frequen-
cies. In order for this mechanism to work properly, large
values for the stiffness of the cell stereocilia are required.
Experimental data are consistent with this conclusion.
Our thesis is that, thanks to the triggering enhance-
ment due to the tectorial membrane inertia, the outer hair
cells are capable of compensating the dissipative losses due
to the inherent viscosity of the cochlear partition. This
imposes precise constraints on the size of the receptor cur-
rents. We know from experiments that the efficiency of the
cochlear amplifier is maximal for near-threshold sound-
pressure levels. At 20 dB SPL the basilar membrane dis-
placements are about 0.6 nm, at least for characteristic
frequencies in the interval from 8 to 18 kHz. The damping
force per unit length of the cochlear partition at these fre-
quencies is as large as the elastic reaction of the basilar
membrane (Fig. 2). Consequently, the outer hair-cell

length changes must be as large as the basilar membrane

displacements in order to produce undamping forces of the
right magnitude. Since the cell motile sensitivity is approx-
imately 20 nm/mV (Ashmore, 1987) and the transducer
current is linked to the receptor potential by the capacitive
impedance of the cell [Eq. (11)], the current must be as
large as 360 pA when the stereocilia are deflected by less
then 1 nm. The largest values reported by Kros et al
(1992) in vitro are about 700 pA, but unfortunately the
relationship between current and cilia deflection has not
been measured yet.

The predicted frequency dependence of the transducer
current may appear in contrast with the intracellular re-
cordings of outer hair cells response to tones in vivo (Cody
and Russell, 1987), which showed negligible receptor po-
tentials (hence transducer currents) at high frequencies for
near-threshold stimuli. But it should be considered that
placing a microelectrode severely limits the local oscilla-
‘tions of the organ of Corti since the stiffness of a micro-
electrode is orders of magnitude larger than that of the
basilar membrane. Thus the dependence of the transducer
current upon the acceleration of the tectorial membrane is
suppressed and the current turns out to be proportional to
the local fluid pressure (that is, ultimately, to the local
displacement of the tectorial membrane).

In previous approaches (Allen, 1977; Neely and Kim,
1986; Kolston, 1988; Kolston et al., 1990), the cochlea was
treated as a “box” with a constant rectangular cross sec-
tion and simple transmission-line partial differential equa-
tions were derived. Unfortunately, the radius of the cross
sections of the guinea-pig cochlear duct increases abruptly
(like that of a trumpet) toward the base, whereas the BM
width decreases markedly, so that the ratio of the two can
be as large as 20, or even more, in the high-frequency
region of the cochlea (Fernindez, 1952). The trumpet
stem spans two-thirds of the entire cochlear length. So
these approximations are reasonable only in the apical frac-
tion, for which reliable experimental data are lacking.
Moreover, active transmission-line models (e.g., Zwicker,
1986; Neely and Kim, 1986) are characterized by ad hoc

~ frequency-dependent negative-damping terms that, al-
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though capable of enhancing the magnitude of the re-
sponse, tend to distort the phase. Whereas, as found by
Ruggero and Rich (1991), the phase is a monotomcally
decreasing function of frequency, _w1th ‘passive” phases
almost superimposed on the “active” ones up to the char-
acteristic frequency of the site.

" In Appendix A we have computed the Green’s func-
tion for a realistic proﬁle of the guinea-pig cochlear duct.
The Green’s function formalism leads naturally to an
integral-equation approach which we prefer as, besides
producing phase and amplitude behaviors in agreement
with experimental data, it accounts more accurately for the
effect of the fluid boundary on the dynamics of the cochlear
partition. In fact, replacing an integral equation for
cochlear motion with a differential equation plus suitable
boundary conditions, as done most clearly by Allen (1977)
and by Steele and Taber (1979), yields roughly approxi-
mated solutions in the small wavelength domain. It is le-
gitimate only if smooth enough solutions are expected and
the cochlear duct boundaries have simple geometry. The
double differentiation used to convert cochlear integral
equations into equivalent partial differential equations
works correctly only if: (1) The logarithmic singularity of
the Green’s function can be treated as a Dirac’s delta, i.e.,
if the factor in the integrand is a smooth function; (2) the
long-range tracts of the Green's function are approxi-
mately linear. In Allen’s box model (Allen, 1977) the
Green’s function, computed with the image-charge
method, is nearly constant on the left side of the singularity
and decreases linearly on the right side as a consequence of
the simplified geometry. So both these tracts are removed
by double differentiation. But, if the longitudinal variabil-
ity of geometﬁcal parameters is considered (cochlear duct
shape and size, basilar membrane width, etc.), the long-
range action of the Green’s function [Fig. 13(b)] cannot be
cancéled by multiple differentiation and the full integral-
equation technique must be applied. More critically, highly
undamped traveling waves undergo extreme space-
oscillatory shrinking in the proximity of their peaks. Since
extremely peaked solutions are expected for the active
cochlea, the extended structure of the Green’s function
singularity (see Appendix A) must be considered and not
simply approximated by a Dirac’s delta. Finally, solving
integral equations by a matrix-inversion technique is sim-
pler and more direct than trying to build up and integrate
high-order differential equations, as these also necessitate
correctly stating boundary conditions.

A limitation of the present approach is the obvious
impossibility to account for the interesting repertoire of
nonlinear phenomena which are known to affect the me-
chanics of the cochlea at medium-large sound intensities
(see, for instance, Johnstone et al, 1986).
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APPENDIX A: THE STAPES AND BASILAR
MEMBRANE FORCE TERMS

The force terms Fg(x,t) and Fgy(x,?), introduced in
Sec. I, are proportional to the pressure difference across the
BM. They summarize the actions, simultaneously trans-
mitted by the fluid, produced respectively by the stapes and
the whole BM on the BM segment at x. Let r be the posi-
tion vector representing a point within the fluid. In the

limit of small fluid-boundary displacements and velocities, =

the pressure field p(r) of an incompressible fluid and the
local fluid acceleration a(r,t) =d,v(r,t), where v(r,?) is the
velocity field and d, indicates partial time derivative, are
linked by Euler equation '

Vp(r,t) + pa(r,t) =0, (A1)

where p is fluid density and V is the gradient operator after
r. Under the assumed conditions the velocity field is irro-
tational. Moreover, its divergence is zero because of fluid
incompressibility. Therefore, we can put v(r,t) =Vé(r,1),
where ¢(r,t) is a scalar field, called velocity potential (see,
for example, Tritton, 1977). Then, Eq. (A1) can be inte-
grated all over the fluid yielding

p(r,t) +pdgh(r,t) =const; (A2)

#(r,t) satisfies Laplace equation V?¢(r,#)=0 with bound-
ary conditions V¢ (r,t) =v(ryt), where v(ry?) is the ve-
locity of the cochlear fluid at the boundary position vector
r, [the component of v(r,?) orthogonal to the fluid bound-
ary vanishes everywhere except at the surface of stapes and
Let us indicate respectively by p, (x,?) and p_(x,1)
the fluid pressure just above and below the BM segment at
point x and time ¢, and with ¢, (x,t) and é_(x1) the
corresponding velocity potentials. Then, Eq. (A2) gives
the following expression for the total force per unit length
(N/m) caused by the motion of the cochlear boundary

Fs(ot) + Fau(&0 =b(x) [p_ (60 —p,(x0]
| = pb(x)3,[$, (x,1)—6_(x1)], (A3)

where b(x) is the effective BM width (see note in the
Introduction). So, provided the velocity potentials above
and below the BM at x are known at any time ¢, the hy-
drodynamic effects of the cochlear motion are completely
determined by the differences ¢, —¢_. These can be for-
mally obtained as follows. _

"As long as the vibrating fluid boundaries do not
change their average position, the isopotential surfaces of ¢
do not depend on t. Let us indicate by S, (x) and §_(x)
the isopotential surfaces (as well as their areas) of the
potentials ¢%, (x,) generated by the motion of the stapes
alone and intersecting the BM at x respectively from above
and below. Since the divergence of v(r,?) is zero, its instan-
taneous space-averaged values 7, (x,t) and U_(x,1), re-

- spectively, orthogonal to S (x)-and S_(x), satisfy the

constant-flux condition 7, (x,£)S . (%)=, (x",1)S (x')

 for different x, x'. Let I, (x) be the curvilinear coordinate
along the medial line crossing the family of surfaces §, (x)
- from base (x=0) to apex (x=1) [Fig. Al(a)]. Then
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FIG. Al. (a) Isopotential surfaces S, (x) (thin solid lines) and related
medial lines. [, (x) (dash-dot symbols) for the velocity potential gener-
ated by the motion of the stapes. (b) Isopotential surfaces S, (x.%) and
related medial lines I, (x,%) for the potential generated by the motion of
a basilar membrane segment at x. The outer contour of the cochlea is
shown as a thick solid line. The basilar membrane is represented as a
horizontal dashed line.
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To determine Fg(x,t) we intég_rate along / (x) from x=0
to x, which yields :

=St (xl)at(xbt)

s x'=x dl+(X-') c
¢+(x’t) =Sato'(t) J‘x'=0>' S+(xl) +¢,

¢ (x.1)

et dl(x)
=S8,a(t)( f L+

x'=x dI__(x’)
=0 S4+(x) J‘

aiettch ity Pri'e]
w=t S_(x7) ) t+

where S and o(f) are surface and displacement of the
stapes, respectively, and C is an integration constant. De-
fining

=1 (dl_-,_(x') di_(x")

NED +S_(x,)), (A4)

Gs(x)=pSb(x) ,
X =X
we obtain an explicit expression for Eq. (5).

In a similar way we can formally determine the con-
tribution to the velocity potential from the acceleration
FE(%1) of the di-long BM segment at X alone. Let
S, (x,%) be the families of equipotential surfaces of the
potential generated by the motion of this segment and
1, (x,x) their medial curvilinear coordinates [Fig. A1(b)].
These surface families differ significantly among them-
selves, depending on coordinate X. Integrating the averaged

- velocity field 7, (x,X,1) generated by the X segment along
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FIG. A2. (a) Isopotential surfaces % (x) and 5% (x’) for the long-range
parts ¢ (x,%) of the velocity potentials ¢, (x,%); inset: semidisk-shaped
source distributions generating the isopotential surfaces; (b) isopotential
surfaces 5% (x,%) for the short-range part ¢%, (x,.%) =4, (x,%) —¢% (x.%)
of the velocity potential in the upper cochlea semispace; inset: compre-
. hensive source distributions generating the singularity contribution and
its BM-mirrored image.

1, (x,X), the segment contribution to Fgy (x,t) is found to
be proportional to &2£(%,t) dx multiplied by

G(x,%)

w=1 (dl (x'%) dl_(x'X)
_pb(x)b(x)f I(S:(x,x)+ _(x,’f)) (AS)

This provides an explicit expression for Eq. (6).

Expressions (A4) and (AS5) indicate that the stapes
propagator Gg(x) and cochlea Green’s function G(x,X)
can be computed by determining the shape of the isopo-
tential surfaces of the velocity potential at any point within
the fluid.

Exact expressions for G(x,X) could be derived for fluid
boundaries with simple symmetry properties (see Allen,
1977). But in the general case the exact shape of the iso-
potential surfaces is not easily determined in the neighbor-
hood of x=ZX, where G(x,X) becomes singular. Therefore,
the procedure illustrated above can be used only to com-
pute G(x,X) away from the singularity region, outside of
which S, (x’,X) are well approximated by the cochlear
duct sections S, (x’) {which of course do not depend upon
x [Fig. A2(a)]}

The general-case problem can be tackled by taking
advantage of the Green’s function linearity, separating it
into its long- and short-range parts. We define the long-
range part Gy(x,X) as in (A5), with substitutions

S.(x' %) -85 (x), dl (x'%)—dx".

This is tantamount to replacing the segment-shaped
velocity-field sources at x (which have opposite signs and
lie on the opposite sides of the BM) with a suitable pair of

semidisk-shaped source distributions opposite in sign and .

occupying the upper and lower semisections of the
cochlear duct at x, the boundary conditions for the velocity
field being unchanged [Fig. A2(a)]. The integral for
Gy(x,X), which depends only upon the geometry of
cochlear duct and BM, can be easily computed. It turns
out to be constant for X <x and to decrease progressively to
a small value for X— 1. In our simulations, numerical val-
ues for Gy(x,X) were obtained using data from Fernandez
(1952) for $% (x’) and b(x) (Fig. 1). -

- The short-range part of the Green s functxon
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G,(x,%) = G(x,%) — Go(x,X)

can be computed from the differences of the short-range
parts of the velocity potentials

&, (x %) =6 . (x.5) — ¢’ (x.5),

which represent the singularity contributions to ¢, (x,X)
generated by the BM segment at x (in order to simplify the
notation, here and in the following we do not indicate
explicitly the dependence of the velocity potentials upon
time, leaving it understood). Here, ¢, (x,X) are equivalent
to the velocity potential generated by the aforementioned
segment-shaped sources, above and below the BM, to-
gether with the semidisk-shaped sources taken with oppo-
site sign [Fig. A2(b)]. Also for this source distribution the
boundary conditions are unchanged. But, owing to the

- multipolar character of the distribution, the range of influ-

ence of ¢° (x,X) over the BM is confined to a distance
comparable to the'local cochlear duct radius. In these con-
ditions the effects of the cochlear walls on the BM can be
safely neglected. Therefore, the only effective boundary
condition to be taken into account is the source mirroring
due to the BM [see inset of Fig. A2(b)].

Following this approach we determined analytically
approximated expressions for short-range term G,(x,%), a
sampled representation of which is given by the set of
peaked curves in Fig. A3(a). Green’s function G(x,%),
sampled at various values of x, is shown in Fig. A3(b),
whereas Gg(x) is shown in Fig. A3(c). We assumed that
Gg(x) is well approximated by G(0,x) except for a pro-
portionality constant and the singularity at x=0. This is
tantamount to assuming that the velocity field generated by
the stapes is similar to that generated by the BM segment
nearest to the stapes [programs for the evaluations of
G(x,X) are available on request]. We verified that applying
this method to-a rectangular-section duct produces negli-
gible differences with respect to Allen’s (1977) result. We
are confident that it produces acceptable approximations
also for the general case.

Fmally, notice that

J- f G(x,X)dx dx

which represents the hydrodynamic mass loading the BM
when the membrane is rigidly displaced all along its length,
is such that

G/M =1500, with M= f m(x)dx, (A6)
: 0 .

M being the total mass of the organ of Corti. The large

value of this ratio, which is hydrodynamic in origin, indi-

cates that it would be wrong to refer the characteristic

* frequencies of the BM to [k(x)/m(x)]"* as for the har-

monic oscillators. In Allen’s box model (Allen, 1977) the
analogous ratio is well approximated by LY (3HH )
=~ 1140, where L is the length of the uncoiled cochlea (18.5
mm), H, the height of the scalae (1 mm) and H, the
height of the cochlear pamtxon (0.1 mm).
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FIG. A3. (a) Samples of the singular part Gp(x,f) of the Green’s func-
tion for several x values as functions of X. (b) Analogous samples for the
whole Green’s function G(x,%) {Eq. (AS5)]. Notice the different scale used
to plot peaks in (a). (c) Stapes propagator Gs(x) [Eq. (A4)].

APPENDIX B: LONGITUDINAL ELASTIC COUPLlNG 1S
NEGLIGIBLE

Longitudinal elastic coupling between adjacent seg-
ments of the organ of Corti depends critically on the struc-
ture of the RL and the TM. The joined upper portions of
the pillar cells form an arch-shaped prominence extending
to the cuticular plate of the first series of OHCs. This arch
possesses peripheral thickenings which, joined together
and to the thickenings contouring the OHC cuticular
plates and the ends of Deiter’s cell phalanges, are closely
tiled to form the RL (Iurato, 1961; Voldfich, 1983). This
is paved according to a hexagonal symmetry. Because of its
peculiar morphology, characterized by a systematic thick-
ening of the cell junctions in the radial direction and by the
deformable contours of the phalangeal processes in the lon-
gitudinal direction, the RL is expected to be rather stiff

under bending around longitudinal axes, but somewhat -

compliant under longitudinal stretching or compression.
The TM is a gelatinous mass attached to the modiolar

side of the cochlear duct and to the organ of Corti (Steel,

1986). Within the TM, a prominent system of radial fibers

- (type A) are embedded in the matrix of type B protofibrils,
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which seem to constitute the TM ground substance
(Hasko and Richardson, 1988). Type A fibers are almost
certainly type II collagen fibrils, whereas type B fibers,
which are extensively cross-linked and organized in sheets,
are formed by noncollageneous, glycosilated polypetides.
None of these fibers appear under tension, so that the TM
can be regarded as incapable of contrasting longitudinal
deformations, its main function being that of transmitting
mechanical excitation to the stereocilia of the hair cells in
the radial direction.

These conclusions can be put in a more quantitative
form as follows. The dynamics of an elastic sheet vary
depending on whether it is thick or thin and under tension
or not. If it is thick, the square-Laplacian term, expressing
the elastic reaction to local flexions, cannot be ignored. If it
is under transverse tension, no matter how thin the sheet,
the Laplacian term (expressing the elastic reaction to
shearing displacements) cannot be ignored. If it is thin and
not under transverse tension, the main space-derivative
term is proportional to the squared gradient of the vertical-
displacement_times its Laplacian, i.e. (in our context)
[axgm(x)]zaiga,(x), and is therefore negligible as far as

* small amplitudes are involved.

Because of the segmental structure of the organ of
Corti and since the applied forces are vertical, torques
around radial axes are negligible and the elastic longitudi-
nal coupling depends mainly on the small elastic reaction
of the RL and the TM to shearing displacements between
adjacent segments. In other words, as far as longitudinal
coupling is concerned, the organ of Corti behaves like a
free viscoelastic strip. Since under normal sound excita-
tions |3,£,(x) | is less than 1072, longitudinal elastic cou-
pling is negligible in the small-amplitude approximation.
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