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Abstract: Humans and animals have the ability to continually acquire, fine-tune,
and transfer knowledge and skills throughout their lifespan. This ability, referred
to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms
that together contribute to the development and specialization of our sensori-
motor skills as well as to long-term memory consolidation and retrieval. Con-
sequently, lifelong learning capabilities are crucial for computational systems
and autonomous agents interacting in the real world and processing continuous
streams of information. However, lifelong learning remains a long-standing chal-
lenge for machine learning and neural network models since the continual acquisi-
tion of incrementally available information from non-stationary data distributions
generally leads to catastrophic forgetting or interference. This limitation repre-
sents a major drawback for state-of-the-art deep neural network models that typ-
ically learn representations from stationary batches of training data, thus without
accounting for situations in which information becomes incrementally available
over time. In this review, we critically summarize the main challenges linked to
lifelong learning for artificial learning systems and compare existing neural net-
work approaches that alleviate, to different extents, catastrophic forgetting. Al-
though significant advances have been made in domain-specific learning with neu-
ral networks, extensive research efforts are required for the development of robust
lifelong learning on autonomous agents and robots. We discuss well-established
and emerging research motivated by lifelong learning factors in biological systems
such as structural plasticity, memory replay, curriculum and transfer learning, in-
trinsic motivation, and multisensory integration.

Keywords: Continual learning, lifelong learning, catastrophic forgetting, memory
consolidation

1 Introduction

Computational systems operating in the real world are exposed to continuous streams of information
and thus are required to learn and remember multiple tasks from dynamic data distributions. For
instance, an autonomous agent interacting with the environment is required to learn from its own
experiences and must be capable of progressively acquiring, fine-tuning, and transferring knowledge
over long time spans. The ability to continually learn over time by accommodating new knowledge
while retaining previously learned experiences is referred to as continual or lifelong learning. Such a
continuous learning task has represented a long-standing challenge for machine learning and neural
networks and, consequently, for the development of artificial intelligence (AI) systems (Hassabis
et al. 2017, Thrun & Mitchell 1995).

The main issue of computational models regarding lifelong learning is that they are prone to catas-
trophic forgetting or catastrophic interference, i.e., training a model with new information interferes
with previously learned knowledge (McClelland et al. 1995, McCloskey & Cohen 1989). This phe-
nomenon typically leads to an abrupt performance decrease or, in the worst case, to the old knowl-
edge being completely overwritten by the new one. Current deep neural network learning models
excel at a number of classification tasks by relying on a large batch of (partially) annotated training
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samples (see Guo et al. (2016), LeCun et al. (2015) for reviews). However, such a learning scheme
assumes that all samples are available during the training phase and, therefore, requires the retraining
of the network parameters on the entire dataset in order to adapt to changes in the data distribution.
When trained on sequential tasks, the performance of conventional neural network models signifi-
cantly decreases on previously learned tasks as new tasks are learned (Kemker et al. 2018, Maltoni &
Lomonaco 2018). Although retraining from scratch pragmatically addresses catastrophic forgetting,
this methodology is very inefficient and hinders the learning of novel data in real time. For instance,
in scenarios of developmental learning where autonomous agents learn by actively interacting with
the environment, there may be no distinction between training and test phases, requiring the learn-
ing model to concurrently adapt and timely trigger behavioural responses (Cangelosi & Schlesinger
2015, Tani 2016).

For overcoming catastrophic forgetting, learning systems must, on the one hand, show the ability to
acquire new knowledge and refine existing knowledge on the basis of the continuous input and, on
the other hand, prevent the novel input from significantly interfering with existing knowledge. The
extent to which a system must be plastic in order to integrate novel information and stable in order
not to catastrophically interfere with consolidated knowledge is known as the stability-plasticity
dilemma and has been widely studied in both biological systems and computational models (Ditzler
et al. 2015, Mermillod et al. 2013, Grossberg 1980, 2012). Due to the very challenging but high-
impact aspects of lifelong learning, a large body of computational approaches have been proposed
that take inspiration from the biological factors of learning from the mammalian brain.

Humans and other animals excel at learning in a lifelong manner, making the appropriate decisions
on the basis of sensorimotor contingencies learned throughout their lifespan (Tani 2016, Bremner
et al. 2012). The ability to incrementally acquire, refine, and transfer knowledge over sustained
periods of time is mediated by a rich set of neurophysiological processing principles that together
contribute to the early development and experience-driven specialization of perceptual and motor
skills (Zenke, Gerstner & Ganguli 2017, Power & Schlaggar 2016, Murray et al. 2016, Lewkowicz
2014). In Section 2, we introduce a set of widely studied biological aspects of lifelong learning and
their implications for the modelling of biologically motivated neural network architectures. First,
we focus on the mechanisms of neurosynaptic plasticity that regulate the stability-plasticity balance
in multiple brain areas (Sec. 2.2 and 2.3). Plasticity is an essential feature of the brain for neural
malleability at the level of cells and circuits (see Power & Schlaggar (2016) a survey). For a sta-
ble continuous lifelong process, two types of plasticity are required: (i) Hebbian plasticity (Hebb
1949) for positive feedback instability, and (ii) compensatory homeostatic plasticity which stabilizes
neural activity. It has been observed experimentally that specialized mechanisms protect knowledge
about previously learned tasks from interference encountered during the learning of novel tasks by
decreasing rates of synaptic plasticity (Cichon & Gan 2015). Together, Hebbian learning and home-
ostatic plasticity stabilize neural circuits to shape optimal patterns of experience-driven connectivity,
integration, and functionality (Zenke, Gerstner & Ganguli 2017, Abraham & Robins 2005).

Importantly, the brain must carry out two complementary tasks: generalize across experiences and
retain specific memories of episodic-like events. In Section 2.4, we summarize the complementary
learning systems (CLS) theory (McClelland et al. 1995, Kumaran et al. 2016) which holds the means
for effectively extracting the statistical structure of perceived events (generalization) while retaining
episodic memories, i.e., the collection of experiences at a particular time and place. The CLS the-
ory defines the complementary contribution of the hippocampus and the neocortex in learning and
memory, suggesting that there are specialized mechanisms in the human cognitive system for pro-
tecting consolidated knowledge. The hippocampal system exhibits short-term adaptation and allows
for the rapid learning of new information which will, in turn, be transferred and integrated into the
neocortical system for its long-term storage. The neocortex is characterized by a slow learning rate
and is responsible for learning generalities. However, additional studies in learning tasks with hu-
man subjects (Mareschal et al. 2007, Pallier et al. 2003) observed that, under certain circumstances,
catastrophic forgetting may still occur (see Sec. 2.4).

Studies on the neurophysiological aspects of lifelong learning have inspired a wide range of machine
learning and neural network approaches. In Section 3, we introduce and compare computational ap-
proaches that address catastrophic forgetting. We focus on recent learning models that i) regulate
intrinsic levels of synaptic plasticity to protect consolidated knowledge (Sec. 3.2); ii) allocate ad-
ditional neural resources to learn new information (Sec. 3.3), and iii) use complementary learning
systems for memory consolidation and experience replay (Sec. 3.4). The vast majority of these
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approaches are designed to address lifelong supervised learning on annotated datasets of finite size
(e.g., Zenke, Poole & Ganguli (2017), Kirkpatrick et al. (2017) and do not naturally extend to more
complex scenarios such as the processing of partially unlabelled sequences. Unsupervised lifelong
learning, on the other hand, has been proposed mostly through the use of self-organizing neural net-
works (e.g., Parisi, Tani, Weber & Wermter (2018, 2017), Richardson & Thomas (2008)). Although
significant advances have been made in the design of learning methods with structural regularization
or dynamic architectural update, considerably less attention has been given to the rigorous evalua-
tion of these algorithms in lifelong and incremental learning tasks. Therefore, in Sec. 3.5 we discuss
the importance of using and designing quantitative metrics to measure catastrophic forgetting with
large-scale datasets.

Lifelong learning has recently received increasing attention due to its implications in autonomous
learning agents and robots. Neural network approaches are typically designed to incrementally adapt
to modality-specific, often synthetic, data samples collected in controlled environments, shown in
isolation and random order. This differs significantly from the more ecological conditions humans
and other animals are exposed to throughout their lifespan (Cangelosi & Schlesinger 2015, Krueger
& Dayan 2009, Wermter et al. 2005, Skinner 1958). Agents operating in the real world must deal
with sensory uncertainty, efficiently process continuous streams of multisensory information, and
effectively learn multiple tasks without catastrophically interfering with previously learned knowl-
edge. Intuitively, there is a huge gap between the above-mentioned neural network models and
more sophisticated lifelong learning agents expected to incrementally learn from their continuous
sensorimotor experiences.

Humans can easily acquire new skills and transfer knowledge across domains and tasks (Barnett &
Ceci 2002) while artificial systems are still in their infancy regarding what is referred to as transfer
learning (Weiss et al. 2016). Furthermore, and in contrast with the predominant tendency to train
neural network approaches with uni-sensory (e.g., visual or auditory) information, the brain benefits
significantly from the integration of multisensory information, providing the means for an efficient
interaction also in situations of sensory uncertainty (Stein et al. 2014, Bremner et al. 2012, Spence
2010). The multisensory aspects of early development and sensorimotor specialization in the brain
have inspired a large body of research on autonomous embodied agents (Lewkowicz 2014, Cangelosi
& Schlesinger 2015). In Section 4, we review computational approaches motivated by biological
aspects of learning which include critical developmental stages and curriculum learning (Sec. 4.2),
transfer learning for the reuse of knowledge during the learning of new tasks (Sec. 4.3), reinforce-
ment learning for the autonomous exploration of the environment driven by intrinsic motivation and
self-supervision (Sec. 4.4), and multisensory systems for crossmodal lifelong learning (Sec. 4.5).

This review complements previous surveys on catastrophic forgetting in connectionist mod-
els (French 1999, Goodfellow et al. 2013, Soltoggio et al. 2017) that do not critically compare recent
experimental work (e.g., deep learning) or define clear guidelines on how to train and evaluate life-
long approaches on the basis of experimentally observed developmental mechanisms. Together, our
and previous reviews highlight lifelong learning as a highly interdisciplinary challenge. Although
the individual disciplines may have more open questions than answers, the combination of these
findings may provide a breakthrough with respect to current ad-hoc approaches, with neural net-
works being the stepping stone towards the increasingly sophisticated cognitive abilities exhibited
by AI systems. In Section 5, we summarize the key ideas presented in this review and provide a set
of ongoing and future research directions.

2 Biological Aspects of Lifelong Learning

2.1 The Stability-Plasticity Dilemma

As humans, we have an astonishing ability to adapt by effectively acquiring knowledge and skills, re-
fining them on the basis of novel experiences, and transferring them across multiple domains (Brem-
ner et al. 2012, Calvert et al. 2004, Barnett & Ceci 2002). While it is true that we tend to gradu-
ally forget previously learned information throughout our lifespan, only rarely does the learning
of novel information catastrophically interfere with consolidated knowledge (French 1999). For
instance, the human somatosensory cortex can assimilate new information during motor learning
tasks without disrupting the stability of previously acquired motor skills (Braun et al. 2001). Life-
long learning in the brain is mediated by a rich set of neurophysiological principles that regulate
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the stability-plasticity balance of the different brain areas and that contribute to the development and
specialization of our cognitive system on the basis of our sensorimotor experiences (Zenke, Gerstner
& Ganguli 2017, Power & Schlaggar 2016, Murray et al. 2016, Lewkowicz 2014). The stability-
plasticity dilemma regards the extent to which a system must be prone to integrate and adapt to new
knowledge and, importantly, how this adaptation process should be compensated by internal mech-
anisms that stabilize and modulate neural activity to prevent catastrophic forgetting (Ditzler et al.
2015, Mermillod et al. 2013)

Neurosynaptic plasticity is an essential feature of the brain yielding physical changes in the neu-
ral structure and allowing us to learn, remember, and adapt to dynamic environments (see Power &
Schlaggar (2016) for a survey). The brain is particularly plastic during critical periods of early devel-
opment in which neural networks acquire their overarching structure driven by sensorimotor experi-
ences. Plasticity becomes less prominent as the biological system stabilizes through a well-specified
set of developmental stages, preserving a certain degree of plasticity for its adaptation and reorgani-
zation at smaller scales (Hensch et al. 1998, Quadrato et al. 2014, Kiyota 2017). The specific profiles
of plasticity during critical and post-developmental periods vary across biological systems (Uylings
2006), showing a consistent tendency to decreasing levels of plasticity with increasing age (Hensch
2004). Plasticity plays a crucial role in the emergence of sensorimotor behaviour by complementing
genetic information which provides a specific evolutionary path (Grossberg 2012). Genes or molec-
ular gradients drive the initial development for granting a rudimentary level of performance from the
start whereas extrinsic factors such as sensory experience complete this process for achieving higher
structural complexity and performance (Hirsch & Spinelli 1970, Shatz 1996, Sur & Leamey 2001).
In this review, we focus on the developmental and learning aspects of brain organization while we
refer the reader to Soltoggio et al. (2017) for a review of evolutionary imprinting.

2.2 Hebbian Plasticity and Stability

The ability of the brain to adapt to changes in its environment provides vital insight into how con-
nectivity and function of the cortex are shaped. It has been shown that while rudimentary patterns
of connectivity in the visual system are established in early development, normal visual input is re-
quired for the correct development of the visual cortex. The seminal work of Hubel & Wiesel (1967)
on the emergence of ocular dominance showed the importance of timing of experience on the devel-
opment of normal patterns of cortical organization. The visual experience of newborn kittens was
experimentally manipulated to study the effects of varied input on brain organization. The disrup-
tion of cortical organization was more severe when the deprivation of visual input began prior to ten
weeks of age while no changes were observed in adult animals. Additional experiments showed that
neural patterns of cortical organization can be driven by external environmental factors at least for a
period early in development (Hubel & Wiesel 1962, 1970, Hubel et al. 1977).

The most well-known theory describing the mechanisms of synaptic plasticity for the adaptation of
neurons to external stimuli was first proposed by Hebb (1949), postulating that when one neuron
drives the activity of another neuron, the connection between them is strengthened. More specifi-
cally, the Hebb’s rule states that the repeated and persistent stimulation of the postsynaptic cell from
the presynaptic cell leads to an increased synaptic efficacy. Throughout the process of development,
neural systems stabilize to shape optimal functional patterns of neural connectivity. The simplest
form of Hebbian plasticity considers a synaptic strength w which is updated by the product of a
pre-synaptic activity x and the post-synaptic activity y:

∆w = x · y · η, (1)

where η is a given learning rate. However, Hebbian plasticity alone is unstable and leads to runaway
neural activity, thus requiring compensatory mechanisms to stabilize the learning process (Abbott
& Nelson 2000, Bienenstock et al. 1982). Stability in Hebbian systems is typically achieved by
augmenting Hebbian plasticity with additional constraints such as upper limits on the individual
synaptic weights or average neural activity (Miller & MacKay 1994, Song et al. 2000). Homeostatic
mechanisms of plasticity include synaptic scaling and meta-plasticity which directly affect synaptic
strengths (Davis 2006, Turrigiano 2011). Without loss of generality, homeostatic plasticity can be
viewed as a modulatory effect or feedback control signal that regulates the unstable dynamics of
Hebbian plasticity (see Fig. 1.a). The feedback controller directly affects synaptic strength on the
basis of the observed neural activity and must be fast in relation to the timescale of the unstable sys-
tem (Aström & Murray 2010). In its simplest form, modulated Hebbian plasticity can be modelled
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Figure 1: Schematic view of two aspects of neurosynaptic adaptation: a) Hebbian learning with
homeostatic plasticity as a compensatory mechanism that uses observations to compute a feedback
control signal (Adapted with permission from Zenke, Gerstner & Ganguli (2017)). b) The com-
plementary learning systems (CLS) theory (McClelland et al. 1995) comprising the hippocampus
for the fast learning of episodic information and the neocortex for the slow learning of structured
knowledge.

by introducing an additional modulatory signal m to Eq. 1 such that the synaptic update is given by

∆w = m · x · y · η. (2)

Modulatory feedback in Hebbian neural networks has received increasing attention, with different
approaches proposing biologically plausible learning through modulatory loops (Grant et al. 2017,
Soltoggio et al. 2017). For a critical review of the temporal aspects of Hebbian and homeostatic
plasticity, we refer the reader to Zenke, Gerstner & Ganguli (2017).

Evidence on cortical function has shown that neural activity in multiple brain areas results from the
combination of bottom-up sensory drive, top-down feedback, and prior knowledge and expectations
(Heeger 2017). In this setting, complex neurodynamic behaviour can emerge from the dense interac-
tion of hierarchically arranged neural circuits in a self-organized manner (Tani 2016). Input-driven
self-organization plays a crucial role in the brain Nelson (2000), with topographic maps being a
common feature of the cortex for processing sensory input (Willshaw & von der Malsburg 1976).
Different models of neural self-organization have been proposed that resemble the dynamics of basic
biological findings on Hebbian-like learning and plasticity (Kohonen 1982, Martinetz et al. 1993,
Fritzke 1992, Marsland et al. 2002), demonstrating that neural map organization results from unsu-
pervised, statistical learning with nonlinear approximations of the input distribution.

To stabilize the unsupervised learning process, neural network self-organization can be comple-
mented with top-down feedback such as task-relevant signals that modulate the intrinsic map plastic-
ity (Parisi, Tani, Weber & Wermter 2018, Soltoggio et al. 2017). In a hierarchical processing regime,
neural detectors have increasingly large spatio-temporal receptive fields to encode information over
larger spatial and temporal scales (Taylor et al. 2015, Hasson et al. 2008). Thus, higher-level layers
can provide the top-down context for modulating the bottom-up sensory drive in lower-level layers.
For instance, bottom-up processing is responsible for encoding the co-occurrence statistics of the
environment while error-driven signals modulate this feedforward process according to top-down,
task-specific factors (Murray et al. 2016). Together, these models contribute to a better understand-
ing of the underlying neural mechanisms for the development of hierarchical cortical organization.

2.3 The Complementary Learning Systems

The brain learns and memorizes. The former task is characterized by the extraction of the statistical
structure of the perceived events with the aim to generalize to novel situations. The latter, conversely,
requires the collection of separated episodic-like events. Consequently, the brain must comprise a
mechanism to concurrently generalize across experiences while retaining episodic memories.
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Sophisticated cognitive functions rely on canonical neural circuits replicated across multiple brain
areas (Douglas et al. 1995). However, although there are shared structural properties, different brain
areas operate at multiple timescales and learning rates, thus differing significantly from each other in
a functional way (Benna & Fusi 2016, Fusi et al. 2005). A prominent example is the complementary
contribution of the neocortex and the hippocampus in learning and memory consolidation (McClel-
land et al. 1995, O’Reilly 2002, 2004). The complementary learning systems (CLS) theory (McClel-
land et al. 1995) holds that the hippocampal system exhibits short-term adaptation and allows for
the rapid learning of novel information which will, in turn, be played back over time to the neocor-
tical system for its long-term retention (see Fig. 1.b). More specifically, the hippocampus employs
a rapid learning rate and encodes sparse representations of events to minimize interference. Con-
versely, the neocortex is characterized by a slow learning rate and builds overlapping representations
of the learned knowledge. Therefore, the interplay of hippocampal and neocortical functionality is
crucial to concurrently learn regularities (statistics of the environment) and specifics (episodic mem-
ories). Both brain areas are known to learn via Hebbian and error-driven mechanisms (O’Reilly &
Rudy 2000). In the neocortex, feedback signals will yield task-relevant representations while, in
the case of the hippocampus, error-driven modulation can switch its functionally between pattern
discrimination and completion for recalling information (O’Reilly 2004).

Studies show that adult neurogenesis contributes to the formation of new memories (Altman 1963,
Eriksson et al. 1998, Cameron et al. 1993, Gage 2000). It has been debated whether human adults
grow significant amounts of new neurons. Recent research has suggested that hippocampal neu-
rogenesis drops sharply in children to undetectable levels in adulthood (Sorrells et al. 2018). On
the other hand, other studies suggest that hippocampal neurogenesis sustains human-specific cogni-
tive function throughout life (Boldrini et al. 2018). During neurogenesis, the hippocampus’ dentate
gyrus uses new neural units to quickly assimilate and immediately recall new information (Altman
1963, Eriksson et al. 1998). During initial memory formation, the new neural progenitor cells exhibit
high levels of plasticity; and as time progresses, the plasticity decreases to make the new memory
more stable (Deng et al. 2010). In addition to neurogenesis, neurophysiological studies evidence the
contribution of synaptic rewiring by structural plasticity on memory formation in adults (Knoblauch
et al. 2014, Knoblauch 2017), with a major role of structural plasticity in increasing information
storage efficiency in terms of space and energy demands.

While the hippocampus is normally associated with the immediate recall of recent memories (i.e.,
short-term memories), the prefrontal cortex (PFC) is usually associated with the preservation and
recall of remote memories (i.e., long-term memories; Bontempi et al. (1999)). Kitamura et al. (2017)
showed that, when the brain learns something new, the hippocampus and PFC are both initially
encoded with the corresponding memory; however, the hippocampus is primarily responsible for
the recent recall of new information. Over time, they showed that the corresponding memory is
consolidated over to PFC, which will then take over responsibility for recall of the (now) remote
memory. It is believed that the consolidation of recent memories into long-term storage occurs
during rapid eye movement (REM) sleep (Taupin & Gage 2002, Gais et al. 2007).

Recently, the CLS theory was updated to incorporate additional findings from neuroscience (Ku-
maran et al. 2016). The first set of findings regards the role of the replaying of memories stored in
the hippocampus as a mechanism that, in addition to the integration of new information, also sup-
ports the goal-oriented manipulation of experience statistics (O’Neill et al. 2010). The hippocampus
rapidly encodes episodic-like events that can be reactivated during sleep or unconscious and con-
scious memory recall (Gelbard-Sagiv et al. 2008), thus consolidating information in the neocortex
via the reactivation of encoded experiences in terms of multiple internally generated replays (Ratcliff
1990). Furthermore, evidence suggests that (i) the hippocampus supports additional forms of gen-
eralization through the recurrent interaction of episodic memories (Kumaran & McClelland 2012)
and (ii) if the new information is consistent with existing knowledge, then its integration into the
neocortex is faster than originally suggested (Tse et al. 2011). Overall, the CLS theory holds the
means for effectively generalizing across experiences while retaining specific memories in a lifelong
manner. However, the exact neural mechanisms remain poorly understood.

2.4 Learning without Forgetting

The neuroscience findings described in Sec. 2.3 demonstrate the existence of specialized neurocog-
nitive mechanisms for acquiring and protecting knowledge. Nevertheless, it has been observed
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that catastrophic forgetting may occur under specific circumstances. For instance, Mareschal et al.
(2007) found an asymmetric interference effect in a sequential category learning task with 3- and
4-month-old infants. The infants had to learn two categories, dog and cat, from a series of pictures
and would have to later distinguish a novel animal in a subsequent preferential looking task. Sur-
prisingly, it was observed that infants were able to retain the category dog only if it was learned
before cat. This asymmetric effect is thought to reflect the relative similarity of the two categories
in terms of perceptual structure.

Additional interference effects were observed for long-term knowledge. Pallier et al. (2003) stud-
ied the word recognition abilities of Korean-born adults whose language environment shifted com-
pletely from Korean to French after being adopted between the ages of 3 and 8 by French families.
Behavioural tests showed that subjects had no residual knowledge of the previously learned Korean
vocabulary. Functional brain imaging data showed that the response of these subjects while listening
to Korean was no different from the response while listening to other foreign languages that they
had been exposed to, suggesting that their previous knowledge of Korean was completely overwrit-
ten. Interestingly, brain activations showed that Korean-born subjects produced weaker responses to
French with respect to native French speakers. It was hypothesized that, while the adopted subjects
did not show strong responses to transient exposures to the Korean vocabulary, prior knowledge
of Korean may have had an impact during the formulation of language skills to facilitate the re-
acquisition of the Korean language should the individuals be re-exposed to it in an immersive way.

Humans do not typically exhibit strong events of catastrophic forgetting because the kind of ex-
periences we are exposed to are very often interleaved (Seidenberg & Zevin 2006). Nevertheless,
forgetting effects may be observed when new experiences are strongly immersive such as in the
case of children drastically shifting from Korean to French. Together, these findings reveal a well-
regulated balance in which, on the one hand, consolidated knowledge must be protected to ensure
its long-term durability and avoid catastrophic interference during the learning of novel tasks and
skills over long periods of time. On the other hand, under certain circumstances such as immersive
long-term experiences, old knowledge can be overwritten in favour of the acquisition and refinement
of new knowledge.

Taken together, the biological aspects of lifelong learning summarized in this section provide in-
sights into how artificial agents could prevent catastrophic forgetting and model graceful forgetting.
In the next sections, we describe and compare an extensive set of neural network models and AI
approaches that have taken inspiration from such principles. In the case of computational systems,
however, additional challenges must be faced due to the limitations of learning in restricted scenarios
that typically capture very few components of the processing richness of biological systems.

3 Lifelong Learning and Catastrophic Forgetting in Neural Networks

3.1 Lifelong Machine Learning

Lifelong learning represents a long-standing challenge for machine learning and neural network sys-
tems (Hassabis et al. 2017, French 1999). This is due to the tendency of learning models to catas-
trophically forget existing knowledge when learning from novel observations (Thrun & Mitchell
1995). A lifelong learning system is defined as an adaptive algorithm capable of learning from
a continuous stream of information, with such information becoming progressively available over
time and where the number of tasks to be learned (e.g., membership classes in a classification task)
are not predefined. Critically, the accommodation of new information should occur without catas-
trophic forgetting or interference.

In connectionist models, catastrophic forgetting occurs when the new instances to be learned dif-
fer significantly from previously observed examples because this causes the new information to
overwrite previously learned knowledge in the shared representational resources in the neural net-
work (French 1999, McCloskey & Cohen 1989). When learning offline, this loss of knowledge can
be recovered because the agent sees the same pseudo-randomly shuffled examples over and over,
but this is not possible when the data cannot be shuffled and is observed as a continuous stream. The
effects of catastrophic forgetting have been widely studied for over two decades, especially in net-
works learned using back-propagation (Ratcliff 1990, Lewandowsky & Li 1994) and in the Hopfield
networks (Nadal et al. 1986, Burgess et al. 1991).
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Early attempts to mitigate catastrophic forgetting typically consisted of memory systems that store
previous data and that regularly replay old samples interleaved with samples drawn from the new
data (Robins 1993, 1995), and these methods are still used today (Gepperth & Karaoguz 2015,
Rebuffi et al. 2016). However, a general drawback of memory-based systems is that they require
explicit storage of old information, leading to large working memory requirements. Furthermore,
in the case of a fixed amount of neural resources, specialized mechanisms should be designed that
protect consolidated knowledge from being overwritten by the learning of novel information (e.g.,
Zenke, Poole & Ganguli (2017), Kirkpatrick et al. (2017)). Intuitively, catastrophic forgetting can
be strongly alleviated by allocating additional neural resources whenever they are required (e.g.,
Parisi, Tani, Weber & Wermter (2018, 2017), Rusu et al. (2016), Hertz et al. (1991)). This approach,
however, may lead to scalability issues with significantly increased computational efforts for neural
architectures that become very large. Conversely, since in a lifelong learning scenario the number of
tasks and samples per task cannot be known a priori, it is non-trivial to predefine a sufficient amount
of neural resources that will prevent catastrophic forgetting without strong assumptions on the dis-
tribution of the input. In this setting, three key aspects have been identified for avoiding catastrophic
forgetting in connectionist models (Richardson & Thomas 2008): (i) allocating additional neural
resources for new knowledge; (ii) using non-overlapping representations if resources are fixed; and
(iii) interleaving the old knowledge as the new information is represented.

The brain has evolved mechanisms of neurosynaptic plasticity and complex neurocognitive functions
that process continuous streams of information in response to both short- and long-term changes in
the environment (Zenke, Gerstner & Ganguli 2017, Power & Schlaggar 2016, Murray et al. 2016,
Lewkowicz 2014). Consequently, the differences between biological and artificial systems go be-
yond architectural differences, and also include the way in which these artificial systems are exposed
to external stimuli. Since birth, humans are immersed in a highly dynamic world and, in response to
this rich perceptual experience, our neurocognitive functions progressively develop to make sense
of increasingly more complex events. Infants start with relatively limited capabilities for process-
ing low-level features and incrementally develop towards the learning of higher-level perceptual,
cognitive, and behavioural functions.

Humans make massive use of the spatio-temporal relations and increasingly richer high-order as-
sociations of the sensory input to learn and trigger meaningful behavioural responses. Conversely,
artificial systems are typically trained in batches, exposing the learning algorithm to multiple iter-
ations of the same training samples in a (pseudo-)random order. After a fixed number of training
epochs, it is expected that the learning algorithm has tuned its internal representations and can pre-
dict novel samples that follow a similar distribution with respect to the training dataset. Clearly, this
approach can be effective (and this is supported by the state-of-the-art performance of deep learning
architectures for visual classification tasks; see Guo et al. (2016), LeCun et al. (2015) for reviews),
but it does not reflect the characteristics of lifelong learning tasks.

In the next sections, we introduce and compare different neural network approaches for lifelong
learning that mitigate, to different extents, catastrophic forgetting. Conceptually, these approaches
can be divided into methods that retrain the whole network while regularizing to prevent catastrophic
forgetting with previously learned tasks (Fig. 2.a; Sec. 3.2), methods that selectively train the net-
work and expand it if necessary to represent new tasks (Fig. 2.b,c; Sec. 3.3), and methods that
model complementary learning systems for memory consolidation, e.g. by using memory replay to
consolidate internal representations (Sec. 3.4). Since considerably less attention has been given to
the rigorous evaluation of these algorithms in lifelong learning tasks, in Sec. 3.5 we highlight the
importance of using and designing new metrics to measure catastrophic forgetting with large-scale
datasets.

3.2 Regularization Approaches

Regularization approaches alleviate catastrophic forgetting by imposing constraints on the update
of the neural weights. Such approaches are typically inspired by theoretical neuroscience models
suggesting that consolidated knowledge can be protected from forgetting through synapses with
a cascade of states yielding different levels of plasticity (Benna & Fusi 2016, Fusi et al. 2005).
From a computational perspective, this is generally modelled via additional regularization terms
that penalize changes in the mapping function of a neural network.
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regularization
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a) Training with network 
expansion

b) Selective network 
retraining and expansion

c) 

Figure 2: Schematic view of neural network approaches for lifelong learning: a) retraining while
regularizing to prevent catastrophic forgetting with previously learned tasks, b) unchanged param-
eters with network extension for representing new tasks, and c) selective retraining with possible
expansion.

Li & Hoiem (2016) proposed the learning without forgetting (LwF) approach composed of convolu-
tional neural networks (CNN) in which the network with predictions of the previously learned tasks
is enforced to be similar to the network with the current task by using knowledge distillation, i.e.,
the transferring of knowledge from a large, highly regularized model into a smaller model (Hinton
et al. 2014). According to the LwF algorithm, given a set of shared parameters θs across all tasks,
it optimizes the parameters of the new task θn together with θs imposing the additional constraint
that the predictions on the samples of the novel task using θs and the parameters of old tasks θo do
not shift significantly in order to remember θo. Given the training data on the new task (Xn, Yn),
the output of old tasks for the new data Yo, and randomly initialized new parameters θn, the updated
parameters θ∗s , θ

∗
o , θ
∗
n are given by:

θ∗s , θ
∗
o , θ
∗
n ← argminθ̂s,θ̂o,θ̂n

(
λoLold(Yo, Ŷo) + Lnew(Yn, Ŷn) +R(θ̂s, θ̂o, θ̂n)

)
, (3)

where Lold(Yo, Ŷo) and Lnew(Yn, Ŷn) minimize the difference between the predicted values Ŷ and
the ground-truth values Y of the new and old tasks respectively using θ̂s, θ̂o, θ̂n, λo is used to balance
new/old tasks, and R is a regularization term to prevent overfitting. However, this approach has the
drawbacks of highly depending on the relevance of the tasks and that the training time for one
task linearly increases with the number of learned tasks. Additionally, while distillation provides
a potential solution to multi-task learning, it requires a reservoir of persistent data for each learned
task. Jung et al. (2018) proposed to regularize the l2 distance between the final hidden activations,
preserving the previously learned input-output mappings by computing additional activations with
the parameters of the old tasks. These approaches, however, are computationally expensive since
they require to compute the old tasks’ parameters for each novel data sample. Other approaches
opt to either completely prevent the update of weights trained on old tasks (Razavian et al. 2014) or
to reduce the learning rate in order to prevent significant changes in the network parameters while
training with new data (Donahue et al. 2014).

Kirkpatrick et al. (2017) proposed the elastic weight consolidation (EWC) model in supervised and
reinforcement learning scenarios. The approach consists of a quadratic penalty on the difference
between the parameters for the old and the new tasks that slows down the learning for task-relevant
weights coding for previously learned knowledge. The relevance of the parameter θ with respect to
a task’s training data D is modelled as the posterior distribution p(θ | D). Assuming a scenario with
two independent tasks A with DA and B with DB , the log value of the posterior probability given
by the Bayes’ rule is:

logp(θ | D) = logp(DB | θ) + logp(θ | DA)− logp(DB), (4)

where the posterior probability logp(θ | DA) embeds all the information about the previous task.
However, since this term is intractable, EWC approximates it as a Gaussian distribution with mean
given by the parameters θ∗A and a diagonal precision given by the diagonal of the fisher information
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matrix F . Therefore, the loss function of EWC is given by

L(θ) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)2, (5)

where LB is the loss of B, λ sets the relevance of the old tasks with respect to the new one, and i
denotes the indexes of the parameters. Therefore, this approach requires a diagonal weighting over
the parameters of the learned tasks which is proportional to the diagonal of the Fisher information
metric, with the synaptic importance being computed offline and limiting its computational applica-
tion to low-dimensional output spaces. Furthermore, additional experiments by Kemker et al. (2018)
have shown that, although EWC outperforms other methods for permutation tasks, it is not capable
of learning new categories incrementally.

Zenke, Poole & Ganguli (2017) proposed to alleviate catastrophic forgetting by allowing individual
synapses to estimate their importance for solving a learned task. Similar to Kirkpatrick et al. (2017),
this approach penalizes changes to the most relevant synapses so that new tasks can be learned with
minimal forgetting. To reduce large changes in important parameters θk when learning a new task,
the authors use a modified cost function L∗n with a surrogate loss which approximates the summed
loss functions of all previous tasks L∗o:

L∗n = Ln + c
∑
k

Ωnk (θ∗k − θk)2, (6)

where c is a weighting parameter to balance new and old tasks, θ∗k are the parameters at the end of
the previous task, and Ωnk is a per-parameter regulation strength. Similar to EWC by Kirkpatrick
et al. (2017), this approach pulls back the more influential parameters towards a reference weight
with good performance on previous tasks. In this case, however, synaptic relevance is computed
in an online fashion over the entire learning trajectory in the parameter space. The two approaches
have shown similar results on the Permuted MNIST benchmark (LeCun et al. 1998).

Maltoni & Lomonaco (2018) proposed the AR1 model for single-incremental-task scenarios which
combines architectural and regularization strategies. Regularization approaches tend to progres-
sively reduce the magnitude of weight changes batch by batch, with most of the changes occurring
in the top layers. Instead, in AR1 intermediate layers weights are adapted without negative impact
in terms of forgetting. Reported results on CORe50 (Lomonaco & Maltoni 2017) and iCIFAR-
100 (Krizhevsky 2009) show that AR1 allows the training of deep convolutional models with less
forgetting, outperforming LwF, EWC, and SI.

Ensemble methods have been proposed to alleviate catastrophic forgetting by training multiple clas-
sifiers and combine them to generate a prediction. Early attempts showed a disadvantage linked
to the intense use of storage memory which scales up with the number of sessions (Polikar et al.
2001, Dai et al. 2007), while more recent approaches restrict the size of the models through multiple
strategies. For instance, Ren et al. (2017) proposed to adaptively adjust to the changing data dis-
tribution by combining sub-models after a new training phase, learning new tasks without referring
to previous training data. Coop et al. (2013) introduced a multi-layer perceptron (MLP) augmented
with a fixed expansion layer (FEL) which embeds a sparsely encoding hidden layer to mitigate the
interference of previously learned representations. Ensembles of FEL networks were used to con-
trol levels of plasticity, yielding incremental learning capabilities while requiring minimal storage
memory. Fernando et al. (2017) proposed an ensemble method in which a genetic algorithm is used
to find the optimal path through a neural network of fixed size for replication and mutation. This
approach, referred to as PathNet, uses agents embedded in a neural network to discover which parts
of the network can be reused for the learning of new tasks while freezing task-relevant paths for
avoiding catastrophic forgetting. PathNet’s authors showed that incrementally learning new tasks
sped up the training of subsequently learned supervised and reinforcement learning tasks; however,
they did not measure performance on the original task to determine if catastrophic forgetting oc-
curred. In addition, PathNet requires an independent output layer for each new task, which prevents
it from learning new classes incrementally (Kemker et al. 2018).

In summary, regularization approaches provide a way to alleviate catastrophic forgetting under cer-
tain conditions. However, they comprise additional loss terms for protecting consolidated knowledge
which, with a limited amount of neural resources, may lead to a trade-off on the performance of old
and novel tasks.
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3.3 Dynamic Architectures

The approaches introduced here change architectural properties in response to new information by
dynamically accommodating novel neural resources, e.g., re-training with an increased number of
neurons or network layers.

For instance, Rusu et al. (2016) proposed to block any changes to the network trained on previous
knowledge and expand the architecture by allocating novel sub-networks with fixed capacity to be
trained with the new information. This approach, referred to as progressive networks, retains a pool
of pre-trained models (one for each learned task Tn). Given N existing tasks, when a new task is
TN+1 is given, a new neural network is created and the lateral connections with the existing tasks
are learned. To avoid catastrophic forgetting, the learned parameters θn for existing tasks Tn are left
unchanged while the new parameter set θN+1 is learned for TN+1. Experiments reported good re-
sults on a wide variety of reinforcement learning tasks, outperforming common baseline approaches
that either pre-train or incrementally fine-tune the models by incorporating prior knowledge only at
initialization. Intuitively, this approach prevents catastrophic forgetting but leads the complexity of
the architecture to grow with the number of learned tasks.

Zhou et al. (2012) proposed the incremental training of a denoising autoencoder that adds neurons
for samples with high loss and subsequently merges these neurons with existing ones to prevent
redundancy. More specifically, the algorithm is composed of two processes for (i) adding new fea-
tures to minimize the residual of the objective function and (ii) merging similar features to obtain a
compact feature representation and in this way prevent overfitting. This model was shown to outper-
form non-incremental denoising autoencoders in classification tasks with the MNIST (LeCun et al.
1998) and the CIFAR-10 (Krizhevsky 2009) datasets. Cortes et al. (2016) proposed to adapt both
the structure of the network and its weights by balancing the model complexity and empirical risk
minimization. In contrast to enforcing a pre-defined architecture, the algorithm learns the required
model complexity in an adaptive fashion. The authors reported good results on several binary classi-
fication tasks extracted from the CIFAR-10 dataset. In contrast to previously introduced approaches
that do not consider multi-task scenarios, Xiao et al. (2014) proposed a training algorithm with a
network that incrementally grows in capacity and also in hierarchical fashion. Classes are grouped
according to their similarity and self-organized into multiple levels, with models inheriting features
from existing ones to speed up the learning. In this case, however, only the topmost layers can grow
and the vanilla back-propagation training procedure is inefficient.

Draelos et al. (2017) incrementally trained an autoencoder on new MNIST digits using the recon-
struction error to show whether the older digits were retained. Their neurogenesis deep learning
(NDL) model adds new neural units to the autoencoder to facilitate the addition of new MNIST
digits, and it uses intrinsic replay (a generative model used for pseudo-rehearsal) to preserve the
weights required to retain older information. Yoon et al. (2018) took this concept to the supervised
learning paradigm and proposed a dynamically expanding network (DEN) that increases the number
of trainable parameters to incrementally learn new tasks. DEN is trained in an online manner by per-
forming selective retraining which expands the network capacity using group sparse regularization
to decide how many neurons to add at each layer.

Part & Lemon (2016, 2017) proposed the combination of a pre-trained CNN with a self-organizing
incremental neural network (SOINN) in order to take advantage of the good representational power
of CNNs and, at the same time, allow the classification network to grow according to the task
requirements in a continuous object recognition scenario. An issue that arises from these types
of approaches is scalability since the classification network grows with the number of classes that
have been learned. Another problem that was identified through this approach is that by relying on
fixed representations, e.g., pre-trained CNNs, the discrimination power will be conditioned by the
dataset used to train the feature extractor. Rebuffi et al. (2016) deal with this problem by storing
example data points that are used along with new data to dynamically adapt the weights of the
feature extractor, a technique that is referred to as rehearsal. By combining new and old data, they
prevent catastrophic forgetting but at the expense of a higher memory footprint.

So far, we have considered approaches designed for (or at least strictly evaluated on) the classifi-
cation of static images. However, in more natural learning scenarios, sequential input underlying
spatio-temporal relations such as in the case of videos must be accounted for. Parisi, Tani, Weber
& Wermter (2017) showed that lifelong learning of human action sequences can be achieved in
terms of prediction-driven neural dynamics with internal representations emerging in a hierarchy of
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recurrent self-organizing networks. The self-organizing networks can dynamically allocate neural
resources and update connectivity patterns according to competitive Hebbian learning. Each neuron
of the neural map consists of a weight vector wj and a number K of context descriptors ck,j with
wj , ck,j ∈ Rn. As a result, recurrent neurons in the map will encode prototype sequence-selective
snapshots of the input. Given a set of recurrent neurons, N , the best-matching unit (BMU) wb with
respect to the input x(t) ∈ Rn is computed as:

b = arg min
j∈N

(
α0‖x(t)− wj‖2 +

K∑
k=1

αk‖Ck(t)− cj,k‖2
)
, (7)

where {αi}i=0...K are constant values that modulate the influence of the current input with respect
to previous neural activity and Ck(t) ∈ Rn is the global context of the network. Each neuron is
equipped with a habituation counter hi expressing how frequently it has fired based on a simplified
model of how the efficacy of a habituating synapse reduces over time. The network is initialized
with two neurons and, at each learning iteration, it inserts a new neuron whenever the activity of the
network of a habituated neuron is smaller than a given threshold. The neural update rule is given by:

∆wi = εi · hi · (x(t)− wi), (8)

where εi is a constant learning rate and hi acts as a modulatory factor (see Eq. 2) that decreases
the magnitude of learning over time to protect consolidated knowledge. This approach has shown
competitive results with batch learning methods on the Weizmann (Gorelick et al. 2005) and the
KTH (Schuldt et al. 2004) action benchmark datasets. Furthermore, it learns robust action-label
mappings also in the case of occasionally missing or corrupted class labels. Parisi, Ji & Wermter
(2018) showed that self-organizing networks with additive neurogenesis show a better performance
than a static network with the same number of neurons, thereby providing insights into the design
of neural architectures in incremental learning scenarios when the total number of neurons is fixed.

Similar GWR-based approaches have been proposed for the incremental learning of body motion
patterns (Mici et al. 2017, Elfaramawy et al. 2017, Parisi et al. 2016) and human-object interac-
tion (Mici et al. 2018). However, these unsupervised learning approaches do not take into account
top-down task-relevant signals that can regulate the stability-plasticity balance, potentially leading
to scalability issues for large-scale datasets. To address this issue, task-relevant modulatory signals
were modelled by Parisi, Tani, Weber & Wermter (2018) which regulate the process of neurogenesis
and neural update (see Sec. 3.4). This model shares a number of conceptual similarities with the
adaptive resonance theory (ART; see Grossberg (2012) for a review) in which neurons are iteratively
adapted to a non-stationary input distribution in an unsupervised fashion and new neurons can be
created in correspondence of dissimilar input data. In the ART model, learning occurs through the
interaction of top-down and bottom-up processes: top-down expectations act as memory templates
(or prototypes) which are compared to bottom-up sensory observations. Similar to the GWR’s acti-
vation threshold, the ART model uses a vigilance parameter to produce fine-grained or more general
memories. Despite its inherent ability to mitigate catastrophic forgetting during incremental learn-
ing, an extensive evaluation with recent lifelong learning benchmarks has not been reported for
continual learning tasks. However, it has been noted that the results of some variants of the ART
model depend significantly upon the order in which the training data are processed.

While the mechanisms for creating new neurons and connections in the GWR do not resemble
biologically plausible mechanisms (e.g., Eriksson et al. (1998), Ming & Song (2011), Knoblauch
(2017)), the GWR learning algorithm represents an efficient computational model that incrementally
adapts to non-stationary input. Crucially, the GWR model creates new neurons whenever they are
required and only after the training of existing ones. The neural update rate decreases as the neurons
become more habituated, which has the effect of preventing that noisy input interferes with consoli-
dated neural representations. Alternative theories suggest that an additional function of hippocampal
neurogenesis is the encoding of time for the formation of temporal associations in memory (Aimone
et al. 2006, 2009), e.g., in terms of temporal clusters of long-term episodic memories. Although the
underlying mechanisms of neurogenesis and structural plasticity remain to be further investigated
in biological systems, these results reinforce that growing neural models with plasticity constitute
effective mitigation of catastrophic forgetting in non-stationary environments.
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3.4 Complementary Learning Systems and Memory Replay

The CLS theory (McClelland et al. 1995, Kumaran et al. 2016) provides the basis for a computational
framework modelling memory consolidation and retrieval in which the complementary tasks of
memorization and generalization are mediated by the interplay of the mammalian hippocampus and
neocortex (see Sec. 2.3). Importantly, the interplay of an episodic memory (specific experience) and
a semantic memory (general structured knowledge) provides important insights into the mechanisms
of knowledge consolidation in the absence of sensory input.

Dual-memory learning systems have taken inspiration, to different extents, from the CLS theory
to address catastrophic forgetting. An early computational example of this concept was proposed
by Hinton & Plaut (1987) in which each synaptic connection has two weights: a plastic weight
with slow change rate which stores long-term knowledge and a fast-changing weight for temporary
knowledge. This dual-weight method reflects the properties of complementary learning systems to
mitigate catastrophic forgetting during sequential task learning. French (1997) developed a pseudo-
recurrent dual-memory framework, one for early processing and the other for long-term storage, that
used pseudo-rehearsal (Robins 1995) to transfer memories between memory centers. In pseudo-
rehearsal, training samples are not explicitly kept in memory but drawn from a probabilistic model.
During the next two decades, numerous neural network approaches based on CLS principles were
used to explain and predict results in different learning and memory domains (see O’Reilly (2002)
for a review). However, there is no empirical evidence that shows that these approaches can scale
up to a large number of tasks or current image and video benchmark datasets (see Sec. 3.5).

More recently, Soltoggio (2015) proposed the use of short- and long-term plasticity for consolidat-
ing new information on the basis of a cause-effect hypothesis testing when learning with delayed
rewards. In this case, the difference between the short- and long-term plasticity is not related to
the duration of the memory but rather to the confidence of consistency of cause-effect relationships.
This meta-plasticity rule, referred to as hypothesis testing plasticity (HTP), shows that such relation-
ships can be extracted from ambiguous information flows, thus towards explaining the learning in
more complex environments (see Sec. 4).

Gepperth & Karaoguz (2015) proposed two approaches for incremental learning using (i) a modified
self-organizing map (SOM) and (ii) a SOM extended with a short-term memory (STM). We refer to
these two approaches as GeppNet and GeppNet+STM respectively. In the case of the GeppNet, task-
relevant feedback from a regression layer is used to select whether learning in the self-organizing
hidden layer should occur. In the GeppNet+STM case, the STM is used to store novel knowledge
which is occasionally played back to the GeppNet layer during sleep phases interleaved with train-
ing phases. This latter approach yielded better performance and faster convergence in incremental
learning tasks with the MNIST dataset. However, the STM has a limited capacity, thus learning new
knowledge can overwrite old one. In both cases, the learning process is divided into two phases:
one for initialization and the other for actual incremental learning. Additional experiments showed
that this approach performs significantly worse than EWC (Kirkpatrick et al. 2017) on different per-
mutation tasks (see Sec. 3.5). Both GeppNet and GeppNet+STM require storing the entire training
dataset during training.

Inspired by the generative role of the hippocampus for the replay of previously encoded experiences,
Shin et al. (2017) proposed a dual-model architecture consisting of a deep generative model and a
task solver. In this way, training data from previously learned tasks can be sampled in terms of
generated pseudo-data and interleaved with information from the new tasks. Thus, it is not nec-
essary to explicitly revise old training samples for experience replay, reducing the requirements of
working memory. This approach is conceptually similar to previous ones using a pseudo-rehearsal
method, i.e., interleaving information of a new task with internally generated samples from previ-
ously learned tasks. Robins (1995) showed that interleaving information of new experiences with
internally generated patterns of previous experiences help consolidate existing knowledge without
explicitly storing training samples. Pseudo-rehearsal was also used by Draelos et al. (2017) for the
incremental training of an autoencoder, using the output statistics of the encoder to generate input
for the decoder during the replay. However, similar to most of the above-described approaches, the
use of pseudo-rehearsal methods was strictly evaluated on two datasets of relatively low complexity,
e.g. the MNIST and the Street View House Number (SVHN) (Netzer et al. 2011). Consequently,
the question arises whether this generative approach can scale up to more complex domains.
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Lüders et al. (2016) proposed an evolvable Neural Turing Machine (ENTM) that enables agents to
store long-term memories by progressively allocating additional external memory components. The
optimal structure for a continually learning network is found from an initially minimal configura-
tion by evolving networks topology and weights. The ENTM configurations can perform one-shot
learning of new associations and mitigate the effects of catastrophic forgetting during incremental
learning tasks. A set of reported experiments in reinforcement learning tasks showed that the dy-
namic nature of the ENTM approach will cause the agents to continually expand its memory over
time. This can lead to an unnecessary memory expansion that would slow down the learning process
significantly. A possible solution to address this issue can be the introduction of cost functions for a
more efficient memory allocation and use.

Lopez-Paz & Ranzato (2017) proposed the Gradient Episodic Memory (GEM) model that yields
positive transfer of knowledge to previous tasks. The main feature of GEM to minimize catas-
trophic forgetting is an episodic memory used to store a subset of the observed examples from a
given task. While minimizing the loss on the current task t, GEM treats the losses on the episodic
memories of tasks k < t as inequality constraints, avoiding their increase but allowing their de-
crease. This method requires considerable more memory than other regularization approaches such
as EWC (Kirkpatrick et al. 2017) at training time (with an episodic memoryMk for each task k)
but can work much better in the single pass setting.

Kemker & Kanan (2018) proposed the FearNet model for incremental class learning that is inspired
by studies of recall and consolidation in the mammalian brain during fear conditioning (Kitamura
et al. 2017). FearNet uses a hippocampal network capable of immediately recalling new examples,
a PFC network for long-term memories, and a third neural network inspired by the basolateral
amygdala for determining whether the system should use the PFC or hippocampal network for a
particular example. FearNet consolidates information from its hippocampal network to its PFC
network during sleep phases. FearNet’s PFC model is a generative neural network that creates
pseudo-samples that are then intermixed with recently observed examples stored in its hippocampal
network. Kamra et al. (2018) presented a similar dual-memory framework that also uses a variational
autoencoder as a generative model for pseudo-rehearsal. Their framework generates a short-term
memory module for each new task; however, prior to consolidation, predictions are made using an
oracle (i.e., they know which module contains the associated memory).

Parisi, Tani, Weber & Wermter (2018) proposed a dual-memory self-organizing architecture for
learning spatiotemporal representations from videos in a lifelong fashion. The complementary mem-
ories are modelled as recurrent self-organizing neural networks: the episodic memory quickly adapts
to incoming novel sensory observations via competitive Hebbian Learning, whereas the semantic
memory progressively learns compact representations by using task-relevant signals to regulate in-
trinsic levels of structural plasticity. For the consolidation of knowledge in the absence of sensory
input, trajectories of neural reactivations from the episodic memory are periodically replayed to
both memories. Reported experiments show that the described method significantly outperforms
previously proposed lifelong learning methods in three different incremental learning tasks with the
CORe50 benchmark dataset (Lomonaco & Maltoni (2017); see Sec. 3.5). Since the development of
the neural maps is unsupervised, this approach can be used in scenarios where the annotations of
training samples are sparse.

3.5 Benchmarks and Evaluation Metrics

Despite the large number of proposed methods addressing lifelong learning, there is no established
consensus on benchmark datasets and metrics for their proper evaluation. Typically, a direct com-
parison of different methods is hindered by the highly heterogeneous and often limited evaluation
schemes to assess the overall performance, levels of catastrophic forgetting, and knowledge transfer.

Lopez-Paz & Ranzato (2017) defined training and evaluation protocols to assess the quality of con-
tinual learning models in terms of their accuracy as well as their ability to transfer knowledge be-
tween tasks. The transfer of knowledge can be forwards or backwards. The former refers to the
influence that learning a task TA has on the performance of a future task TB , whereas the latter
refers to the influence of a current task TB on a previous task TA. The transfer is positive when
learning about TA improves the performance of another task TB (forwards or backwards) and nega-
tive otherwise. (See Sec. 4.3 for an introduction to learning models addressing transfer learning.)
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a) b) CUB-200MNIST c) CORe50

Figure 3: Example images from benchmark datasets used for the evaluation of lifelong learning
approaches: a) the MNIST dataset with 10 digit classes (LeCun et al. 1998), b) the Caltech-UCSD
Birds-200 (CUB-200) dataset composed of 200 different bird species (Wah et al. 2011), and c)
the CORe50 containing 50 objects with variations in background, illumination, blurring, occlusion,
pose, and scale (adapted with permission from Lomonaco & Maltoni (2017)).

Kemker et al. (2018) suggested a set of guidelines for evaluating lifelong learning approaches and
performed complementary experiments that provide a direct quantitative comparison of a number of
approaches. Such guidelines comprise the use of three benchmark experiments: (i) data permuta-
tion, (ii) incremental class learning, and (iii) multimodal learning. The data permutation experiment
consists in training a model with a dataset along with a permuted version of the same dataset, which
tests the model’s ability to incrementally learn new information with similar feature representations.
It is then expected that the model prevents catastrophic forgetting with the original data during
the subsequent learning of randomly permuted data samples. In the incremental class learning ex-
periment, the model performance reflects its ability to retain previously learned information while
incrementally learning one class at a time. Finally, in the multimodal learning experiment, the same
model is sequentially trained with datasets of different modalities, which tests the model’s ability to
incrementally learn new information with dramatically different feature representations (e.g., first
learn an image classification dataset and then learn an audio classification dataset).

In contrast to the datasets typically proposed in the literature to evaluate lifelong learning approaches
(e.g., MNIST containing 10 digit classes with low-resolution images; Fig. 3.a), the above-mentioned
experimental conditions were conducted using the Caltech-UCSD Birds-200 (CUB-200) dataset
composed of 200 different bird species (Wah et al. (2011); Fig. 3.b) and the AudioSet dataset, which
is built from YouTube videos with 10-second sound clips from 632 classes and over 2 million an-
notations (Gemmeke et al. 2017). The approaches considered were supervised: a standard MLP
trained online as a baseline, the EWC (Kirkpatrick et al. 2017), the PathNet (Fernando et al. 2017),
the GeppNet and GeppNet+STM (Gepperth & Karaoguz 2015), and the FEL (Coop et al. 2013).
For the data permutation experiment, best results were obtained by PathNet followed by EWC, sug-
gesting that models that use the ensembling and regularization mechanisms will work best at incre-
mentally learning new tasks/datasets with similar feature distributions. In contrast, EWC performed
better than PathNet on the multi-modal experiment because EWC does a better job on separating
non-redundant (i.e., dissimilar) data. For the incremental learning task, best results were obtained
with a combination of rehearsal and dual-memory systems (i.e. GeppNet+STM), yielding gradual
adaptation and knowledge consolidation (see Fig.4). However, since rehearsal requires the storage
of raw training examples, pseudo-rehearsal may be a better strategy for future work.

Lomonaco & Maltoni (2017) proposed the CORe50, a novel dataset for continuous object recogni-
tion that includes 50 classes of objects observed from different perspectives and includes variations
in background, illumination, blurring, occlusion, pose, and scale (Fig. 3.c). With respect to the
above-discussed datasets, CORe50 provides samples collected in experimental conditions closer to
what autonomous agents and robots are exposed to in the real world (see Sec. 4). Along with the
dataset, the authors propose three incremental learning scenarios: (i) new instances (NI) where all
classes are shown in the first batch while subsequent instances of known classes become available
over time, new classes (NC) where, for each sequential batch, new object classes are available so that
the model must deal with the learning of new classes without forgetting previously learned ones, and
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(c) AudioSet

Figure 4: Results of several lifelong learning approaches for incremental class learning. The mean-
class test accuracy evaluated on the MNIST (a), CUB-200 (b), and AudioSet (c) is shown for the
following approaches: FEL (red), MLP (yellow), GeppNet (green), GeppNet+STM (blue), EWC
(pink), and offline model (dashed line). Adapted with permission from Kemker et al. (2018).

(iii) new instances and classes (NIC) where both new classes and instances are presented in each
training batch. According to the reported results, EWC (Kirkpatrick et al. 2017) and LwF (Li &
Hoiem 2016) perform significantly worse in NC and NIC than in NI.

Perhaps not surprisingly, overall performance generally drops when using datasets of higher com-
plexity such as CUB-200 and CORe50 than when tested on the MNIST. Such results indicate that
lifelong learning is a very challenging task and, importantly, that the performance of most ap-
proaches can differ significantly according to the specific learning strategy. This suggests that while
there is a large number of approaches capable of alleviating catastrophic forgetting in highly con-
trolled experimental conditions, lifelong learning has not been tackled for more complex scenarios.
Therefore, additional research efforts are required to develop robust and flexible approaches subject
to more exhaustive, benchmark evaluation schemes.

4 Developmental Approaches and Autonomous Agents

4.1 Towards Autonomous Agents

Humans have the extraordinary ability to learn and progressively fine-tune their sensorimotor skills
in a lifelong manner (Tani 2016, Bremner et al. 2012, Calvert et al. 2004). Since the moment of
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birth, humans are immersed in a highly dynamic crossmodal environment which provides a wealth
of experiences for shaping perception, cognition, and behaviour (Murray et al. 2016, Lewkowicz
2014). A crucial component of lifelong learning in infants is their spontaneous capacity of au-
tonomously generating goals and exploring their environment driven by intrinsic motivation (Can-
gelosi & Schlesinger 2015, Gopnik et al. 1999). Consequently, the ability to learn new tasks and
skills autonomously through intrinsically motivated exploration is one of the main factors that differ-
entiate biological lifelong learning from current continual neural networks models of classification.

While there has been significant progress in the development of models addressing incremental
learning tasks (see Sec. 3), such models are designed to alleviate catastrophic forgetting from a
set of annotated data samples. Typically, the complexity of the datasets used for the evaluation of
lifelong learning tasks is very limited and does not reflect the richness and level of uncertainty of
the stimuli that artificial agents can be exposed to in the real world. Furthermore, neural models
are often trained with data samples shown in isolation or presented in a random order. This sig-
nificantly differs from the highly organized manner in which humans and animals efficiently learn
from samples presented in a meaningful order for the shaping of increasingly complex concepts and
skills (Krueger & Dayan 2009, Skinner 1958). Therefore, learning in a lifelong manner goes be-
yond the incremental accumulation of domain-specific knowledge, enabling to transfer generalized
knowledge and skills across multiple tasks and domains (Barnett & Ceci 2002) and, importantly,
benefiting from the interplay of multisensory information for the development and specialization of
complex neurocognitive functions (Murray et al. 2016, Tani 2016, Lewkowicz 2014).

Intuitively, it is unrealistic to provide an artificial agent with all the necessary prior knowledge
to effectively operate in real-world conditions (Thrun & Mitchell 1995). Consequently, artificial
agents must exhibit a richer set of learning capabilities enabling them to interact in complex en-
vironments with the aim to process and make sense of continuous streams of (often uncertain)
information (Hassabis et al. 2017, Wermter et al. 2005). In the last decade, significant advances
have been made to embed biological aspects of lifelong learning into neural network models. In
this section, we summarize well-established and emerging neural network approaches driven by in-
terdisciplinary research introducing findings from neuroscience, psychology, and cognitive sciences
for the development of lifelong learning autonomous agents. We focus on discussing models of
critical developmental stages and curriculum learning (Sec. 4.2), transfer learning for the reuse of
consolidated knowledge during the acquisition of new tasks (Sec. 4.3), autonomous exploration and
choice of goals driven by curiosity and intrinsic motivation (Sec. 4.4), and the crossmodal aspects of
lifelong learning for multisensory systems and embodied agents (Sec. 4.5). In particular, we discuss
on how these components (see Fig. 5) can be used (independently or combined) to improve current
approaches addressing lifelong learning.

4.2 Developmental and Curriculum Learning

Learning and development interact in a very intricate way (Elman 1993). Humans show an ex-
ceptional capacity to learn throughout their lifespan and, with respect to other species, exhibit the
lengthiest developmental process for reaching maturity. There is a limited time window in devel-
opment in which infants are particularly sensitive to the effects of their experiences. This period is
commonly referred to as the sensitive or critical period of development (Lenneberg 1967) in which
early experiences are particularly influential, sometimes with irreversible effects in behaviour (Sen-
ghas et al. 2004). During these critical periods, the brain is particularly plastic (Fig. 5.a) and neu-
ral networks acquire their overarching structure driven by sensorimotor experiences (see Power &
Schlaggar (2016) for a survey). Afterwards, plasticity becomes less prominent and the system sta-
bilizes, preserving a certain degree of plasticity for its subsequent adaptation and reorganisation at
smaller scales (Hensch et al. 1998, Quadrato et al. 2014, Kiyota 2017).

The basic mechanisms of critical learning periods have been studied in connectionist mod-
els (Thomas & Johnson 2006, Richardson & Thomas 2008), in particular with the use of self-
organizing learning systems which reduce the levels of functional plasticity through a two-phase
training of the topographic neural map (Kohonen 1982, 1995, Miikkulainen 1997). In a first organi-
zation phase, the neural map is trained with a high learning rate and large spatial neighbourhood size,
allowing the network to reach an initial rough topological organization. In a second tuning phase,
the learning rate and the neighbourhood size are iteratively reduced for fine-tuning. Implementa-
tions of this kind have been used to develop models of early visual development (Miller et al. 1989),
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Figure 5: Schematic view of the main components for the development of autonomous agents able
to learn over long periods of time in complex environments: Developmental and curriculum learning
(Sec. 4.2), transfer learning (Sec. 4.3), curiosity and intrinsic motivation (Sec. 4.4), and crossmodal
learning (Sec. 4.5).

language acquisition (Lambon Ralph & Ehsan 2006, Li et al. 2004), and recovery from brain in-
juries (Marchman 1993). Recent studies on critical periods in deep neural networks showed that the
initial rapid learning phase plays a key role in defining the final performance of the networks (Achille
et al. 2017). The first few epochs of training are critical for the allocation of resources across differ-
ent layers dictated by the initial input distribution. After such a critical period, the initially allocated
neural resources can be re-distributed through additional learning phases.

Developmental learning strategies have been experimented on with embedded agents to regulate
the embodied interaction with the environment in real time (Cangelosi & Schlesinger 2015, Tani
2016). In contrast to computational models that are fed with batches of information, developmental
agents acquire an increasingly complex set of skills based on their sensorimotor experiences in an
autonomous manner. Consequently, staged development becomes essential for bootstrapping cog-
nitive skills with less amount of tutoring experience. However, the use of developmental strategies
for artificial learning systems has shown to be a very complex practice. In particular, it is difficult
to select a well-defined set of developmental stages that favours the overall learning performance
in highly dynamic environments. For instance, in the predictive coding framework (Adams et al.
2015, Rao & Ballard 1999), the intention towards a goal can be generated through the prediction
of the consequence of an action by means of the error regression with the prediction error. The
use of generative models, which are implicit in predictive coding, is one component embedded in
the framework of active inference (Friston et al. 2015). Active inference models aim to understand
how to select the data that best discloses its causes in dynamic and uncertain environments through
the bilateral use of action and perception. Nevertheless, it remains unclear how to systematically
define developmental stages on the basis of the interaction between innate structure, embodiment,
and (active) inference.

Humans and animals exhibit better learning performance when examples are organized in a mean-
ingful way, e.g., by making the learning tasks gradually more difficult (Krueger & Dayan 2009).
Following this observation, referred to as curriculum learning, Elman (1993) showed that having
a curriculum of progressively harder tasks (Fig. 5.a) leads to faster training performance in neural
network systems. This has inspired similar approaches in robotics (Sanger 1994) and more recent
machine learning methods studying the effects of curriculum learning in the performance of learn-
ing (Bengio et al. 2009, Reed & de Freitas 2015, Graves et al. 2016). Experiments on datasets
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of limited complexity (such as MNIST) showed that curriculum learning acts as unsupervised pre-
training, leading to improved generalization and faster speed of convergence of the training process
towards the global minimum. However, the effectiveness of curriculum learning is highly sensitive
with respect to the modality of progression through the tasks. Furthermore, this approach assumes
that tasks can be ordered by a single axis of difficulty. Graves et al. (2017) proposed to treat the task
selection problem as a stochastic policy over the tasks that maximizes the learning progress, leading
to an improved efficiency in curriculum learning. In this case, it is necessary to introduce additional
factors such as intrinsic motivation (Oudeyer et al. 2007, Barto 2013), where indicators of learning
progress are used as reward signals to encourage exploration (see Sec. 4.4). Curriculum strategies
can be seen as a special case of transfer learning (Weiss et al. 2016), where the knowledge collected
during the initial tasks is used to guide the learning process of more sophisticated ones.

4.3 Transfer Learning

Transfer learning refers to applying previously acquired knowledge in one domain to solve a problem
in a novel domain (Barnett & Ceci 2002, Pan & Yang 2010, Holyoak & Thagard 1997). In this
context, forward transfer refers to the influence that learning a task TA has on the performance of a
future task TB , whereas backward transfer refers to the influence of a current task TB on a previous
task TA (Fig. 5.b). For this reason, transfer learning represents a significantly valuable feature of
artificial systems for inferring general laws from (a limited amount of) particular samples, assuming
the simultaneous availability of multiple learning tasks with the aim to improve the performance at
one specific task.

Transfer learning has remained an open challenge in machine learning and autonomous agents (see
Weiss et al. (2016) for a survey). Specific neural mechanisms in the brain mediating the high-level
transfer learning are poorly understood, although it has been argued that the transfer of abstract
knowledge may be achieved through the use of conceptual representations that encode relational
information invariant to individuals, objects, or scene elements (Doumas et al. 2008). Zero-shot
learning (Lampert et al. 2009, Palatucci et al. 2009) and one-shot learning (Fei-Fei et al. 2003,
Vinyals et al. 2016) aim at performing well on novel tasks but do not prevent catastrophic forgetting
on previously learned tasks. An early attempt to realize lifelong learning through transfer learning
was proposed by Ring (1997) through the use of a hierarchical neural network that solves increas-
ingly complex reinforcement learning tasks by incrementally adding neural units and encode a wider
temporal context in which actions take place.

More recent deep learning approaches have attempted to tackle lifelong transfer learning in a variety
of domains. Rusu et al. (2017) proposed the use of progressive neural networks (Rusu et al. 2016)
to transfer learned low-level features and high-level policies from a simulated to a real environment.
The task consists of learning pixel-to-action reinforcement learning policies with sparse rewards
from raw visual input to a physical robot manipulator. Tessler et al. (2017) introduced a hierarchical
deep reinforcement learning network that uses an array of skills and skill distillation to reuse and
transfer knowledge between tasks. The approach was evaluated by teaching an agent to solve tasks
in the Minecraft video game. However, skill networks need to be pre-trained and cannot be learned
along with the overarching architecture in an end-to-end fashion. Lopez-Paz & Ranzato (2017)
proposed the Gradient Episodic Memory (GEM) model that alleviates catastrophic forgetting and
performs positive transfer to previously learned tasks. The model learns the subset of correlations
common to a set of distributions or tasks, able to predict target values associated with previous or
novel tasks without making use of task descriptors. However, similar to an issue shared with most
of the approaches discussed in Sec. 3, the GEM model was evaluated on the MNIST and CIFAR100
datasets. Therefore, the question remains whether GEM scales up to more realistic scenarios.

4.4 Curiosity and Intrinsic Motivation

Computational models of intrinsic motivation have taken inspiration from the way human infants
and children choose their goals and progressively acquire skills to define developmental structures in
lifelong learning frameworks (Baldassarre & Mirolli (2013); see Gottlieb et al. (2013) for a review).
Infants seem to select experiences that maximize an intrinsic learning reward through an empirical
process of exploration (Gopnik et al. 1999). From a modelling perspective, it has been proposed
that the intrinsically motivated exploration of the environment, e.g., driven by the maximization
of the learning progress (Oudeyer et al. (2007), Schmidhuber (1991), see Fig. 5.c for a schematic
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view), can lead to the self-organization of human-like developmental structures where the skills
being acquired become progressively more complex.

Computational models of intrinsic motivation can collect data and acquire skills incrementally
through the online (self-)generation of a learning curriculum (Baranes & Oudeyer 2013, Forestier
& Oudeyer 2016). This allows the efficient, stochastic selection of tasks to be learned with an ac-
tive control of the growth of the complexity. Recent work in reinforcement learning has included
mechanisms of curiosity and intrinsic motivation to address scenarios where the rewards are sparse
or deceptive (Forestier et al. 2017, Pathak et al. 2017, Tanneberg et al. 2017, Bellemare et al. 2016,
Kulkarni et al. 2016). In a scenario with very sparse extrinsic rewards, curiosity-driven exploration
provides intrinsic reward signals that enable the agent to autonomously and progressively learn tasks
of increasing complexity. Pathak et al. (2017) proposed an approach to curiosity-driven exploration
where curiosity is modelled as the error in an agent’s ability to predict the consequences of its own
actions. This approach has shown to scale up to high-dimensional visual input, using the knowl-
edge acquired from previous experiences for the faster exploration of unseen scenarios. However,
the method relies on interaction episodes that convert unexpected interactions into intrinsic rewards,
which does not extend to scenarios where interactions are rare. In this case, internally generated
representations of the previous sparse interactions could be replayed and used to guide exploration
(in a similar way to generative systems for memory replay; see Sec. 3.4).

4.5 Multisensory Learning

The ability to integrate multisensory information is a crucial feature of the brain that yields a co-
herent, robust, and efficient interaction with the environment (Spence 2014, Ernst & Bülthoff 2004,
Stein & Meredith 1993). Information from different sensor modalities (e.g. vision, audio, proprio-
ception) can be integrated into multisensory representations or be used to enhance unisensory ones
(see Fig. 5.d).

Multisensory processing functions are the result of the interplay of the physical properties of the
crossmodal stimuli and prior knowledge and expectations (e.g., in terms of learned associations),
scaffolding perception, cognition, and behaviour (see Murray et al. (2016), Stein et al. (2014) for
reviews). The process of multisensory learning is dynamic across the lifespan and is subject to both
short- and long-term changes. It consists of the dynamic reweighting of exogenous and endogenous
factors that dictate to which extent multiple modalities interact with each other. Low-level stimulus
characteristics (e.g., spatial proximity and temporal coincidence) are available before the forma-
tion of learned perceptual representations that bind increasingly complex higher-level characteris-
tics (e.g., semantic congruency). Sophisticated perceptual mechanisms of multisensory integration
emerge during development, starting from basic processing capabilities and progressively specializ-
ing towards more complex cognitive functions on the basis of sensorimotor experience (Lewkowicz
2014, Spence 2014).

From a computational perspective, modelling multisensory learning can be useful for a number of
reasons. First, multisensory functions aim at yielding robust responses in the case of uncertain and
ambiguous sensory input. Models of causal inference have been applied to scenarios comprising
the exposure to incongruent audio-visual information for solving multisensory conflicts (Parisi, Bar-
ros, Kerzel, Wu, Yang, Li, Liu & Wermter 2017, Parisi, Barros, Fu, Magg., Wu, Liu & Wermter
2018). Second, if trained with multisensory information, one modality can be reconstructed from
available information in another modality. Moon et al. (2015) proposed multisensory processing
for an audio-visual recognition task in which knowledge in a source modality can be transferred to
a target modality. Abstract representations obtained from a network encoding the source modality
can be used to fine-tune the network in the target modality, thereby relaxing the imbalance of the
available data in the target modality. Barros et al. (2017) proposed a deep architecture modelling
crossmodal expectation learning. After a training phase with audio-visual information, unisensory
network channels can reconstruct the expected output from the other modality. Finally, mechanisms
of attention are essential in lifelong learning scenarios for processing relevant information in com-
plex environments and efficiently triggering goal-directed behaviour from continuous streams of
multisensory information (Spence 2014). Such mechanisms may be modelled via the combination
of the exogenous properties of crossmodal input, learned associations and crossmodal correspon-
dences, and internally generated expectations (Chen & Spence 2017) with the aim of continually
shaping perception, cognition, and behaviour in autonomous agents.
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5 Conclusion

Lifelong learning represents an utterly interesting but challenging component of artificial systems
and autonomous agents operating on real-world data, which is typically non-stationary and tempo-
rally correlated. The mammalian brain remains the best model of lifelong learning, which makes
biologically-inspired learning models a compelling approach. The general notion of structural plas-
ticity (Sec. 2.2) is widely used across the machine learning literature and represents a promising
solution to lifelong learning in its own right, even when disregarding biological desiderata. Pro-
posed computational solutions for mitigating catastrophic forgetting and interference have focused
on regulating intrinsic levels of plasticity to protect acquired knowledge (Sec. 3.2), dynamically
allocating new neurons or network layers to accommodate novel knowledge (Sec. 3.3), and us-
ing complementary learning networks with experience replay for memory consolidation (Sec. 3.4).
However, despite significant advances, current models of lifelong learning are still far from provid-
ing the flexibility, robustness, and scalability exhibited by biological systems. The most popular
deep and shallow learning models of lifelong learning are restricted to the supervised domain, rely-
ing on large amounts of annotated data collected in controlled environments (see Sec. 3.5). Such
a domain-specific training scheme cannot be applied directly to autonomous agents that operate in
highly dynamic, unstructured environments.

Additional research efforts are required to combine multiple methodologies that integrate a variety
of factors observed in human learners. Basic mechanisms of critical periods of development (Sec.
4.2) can be modelled to empirically determine convenient (multilayered) neural network architec-
tures and initial patterns of connectivity that improve the performance of the model for subsequent
learning tasks. Methods comprising curriculum and transfer learning (Sec. 4.3) are a fundamental
feature for reusing previously acquired knowledge and skills to solve a problem in a novel domain
by sharing low- and high-level representations. For agents learning autonomously, approaches using
intrinsic motivation (Sec. 4.4) are crucial for the self-generation of goals, leading to an empirical
process of exploration and the progressive acquisition of increasingly complex skills. Finally, mul-
tisensory integration (Sec. 4.5) is a key feature of autonomous agents operating in highly dynamic
and noisy environment, leading to robust learning and behaviour also in situations of uncertainty.
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