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SUMMARY 

A simple neurone model is constructed and analysed mathematically to see what 
types of operation it can perform on its synaptic inputs. The neurone consists essen- 
tially of a soma together with semi-infinite dendrite. Provided their conductance 
changes are sufficiently small, excitatory synapses are linearly additive and inhibitory 
synapses are linearly subtractive, irrespective of location. Inhibitory synapses, pro- 
ducing large conductance changes and located preferably on the soma, are ideally 
suited to carry out division. The extension of this model to the more complex situa- 
tion of branching dendritic trees is briefly examined and its relevance to real nerve 
ceils is discussed. 

Background 
Several recent nerve-net models ~,~,9,1° require certain properties of nerve cells. 

In particular, they have to carry out the arithmetical operations of addition and sub- 
traction and, in some cases, of  division. The purpose of  this paper is to examine what 
classes of arithmetical operations may be performed by a simple, idealized type of 
nerve cell. 

The model 
The nerve cell is taken to be a uniform, leaky cable extending to infinity in the 

positive direction and stopped off by a resistance Ro at the origin. The cable has 
longitudinal resistance Rl/unit length and membrane resistance Rm × unit length. 
Its membrane potential is zero in the resting state. The firing zone of the cell membrane 
is situated at the origin. A synaptic input consists of an e.m.f. Vs applied across the 
membrane at the point x --- x.~ in series with a resistance Rs (seY., the set of  synaptic 
inputs). We suppose that there are just two inputs, <~VI,xI,RL>- and <V~.,x~,R~: ~. 
This is essentially the synaptic model of Eccles 6 applied to a soma-dendritic cable. 
The firing rate of the cell is taken to be a function of the potential Vo at the firing 
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Fig. 1. Circuit diagram of the hypothetical nerve cell discussed in the text. The cell soma is at the 
origin. There ate two synaptic inputs on the dendrite: an excitatory one at xv. and an inhibitory one 
at x,. Synapses on the soma may alter the impedance R,,. The cell firing rate is a funclion solely of 
the potential at the origin. 

zone.  x = 0. The  inputs  a re  cons ide red  to be long- las t ing ,  so tha t  t r ans ien l  effects - 

due  to c a p a c i t a n c e  and  induc t ance  - -  may  be ignored•  

Solution o f  the mode/ 

Let il be the l ong i tud ina l  cur ren t ,  im the m e m b r a n e  cu r r en t  densi ty ,  it and  i,,: 

the synap t i c  cu r ren t s  a t  x - - x~ and  x = xE respec t ive ly  and  io the leak c u r r e m  at 

the or ig in .  Then  the fo l lowing  di f ferent ia l  e q u a t i o n s  and  b o u n d a r y  cond i t i ons  must  

be sat isf ied : 

DEs  

I ~V 
i il - (1} 

RI c~x 

bit 
I im (2) 

3x 

V i,n Rm {3) 

BCs 

V - ÷ 0  as x + ~- c-~ (4} 

I V i0 Ro at  x 0. i.e. Vo : i o R o  (5) 

V is c o n t i n u o u s  a t x  : x t a n d a t x  = xF. (6) (7) 

il = - - i o  at x 0 {8) 
• XI"  

i [ l , ] X l  i~ ( V t - - V ) x R 1 )  : Xl (9, 

I Rv, -x  : xv, 

Vo 

F o r  xt ~< XE, the so lu t ion  o f  these e q u a t i o n s  gives 

_ {1 L ( I - - 0 ) G E } G t V I  a - G~VE/zl 

{ l+ ,uo )  + [(1+/~o) + ( l - - F o } a  2] { I + ( I - - o ) G E }  GT + [(1+/~o) ~ ( I - - ,uo) f l  2] GE 

where  uo = 2R1/Ro 

GT = 2R] /2Rr  

G t , : =  2R~/2R ~ 

- - x  j/2 

--x~/)~ 
/~ : e 
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o [42;~t"- 

and 2 \/R,~(/R1 is the smtce constant of the cable. 

(See Appendix for the derivation of this formula.) 

Significance o f  the constants 

Vl and V~ are the inhibitory and excitatory driving potentials, st and ;? give the 
proportional decrements of VI and V~: respectively that are due simply to the leaky 
cable properties of the soma-dendritic membrane. ¢2 has a rather complex effect and 
provides a measure of the relative remoteness of the two synaptic inputs. #0 is the 
normalized soma conductance: it is the ratio of the actual soma conductance to the 
membrane conductance across one spacc constant. Likewise G~ and Gv are normal- 
ized synaptic conductances. GI and GE will depend on the number and/or firing 
rates of the inhibitory and excitatory inputs. If the synaptic conductance attributable 
to every inhibitory input is constant (and similarly for every excitatory input), then 

GL ~ m, the number of active inhibitory synapses 
Gi.: ~ n~:, the number of active excitatory synapses. 

Behaviour of the solution under certain conditions 

There are four cases of special interest: (i) when the excitatory and inhibitory 
synapses are both located on the soma: (ii) when the excitatory and inhibitory synapses 
are situated close together on a remote portion of the dendrite: (iii) when the inhibi- 
tory synapse is located on the soma whilst the excitatory synapse is remote: (iv) 
when the inhibitory and excitatory synapses are situated on widely separated portions 
of the remote dendrite. 

(i) . ~ . / ~ -  I, ,, I. 
Gl Vl ~ GEVI~, 

The expression t0r V0 becomes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
~(1 i /to)-~ Gw-!  GE 

V l - '  G~: Vl.: 
GI  

I f  G I  g- GE ~ 1 ~. ,uo, th is  a p p r o x i m a t e s  to . . . . . . . . . .  - -G i i  . . . .  
. . . .  

G~ 

I.e. V0 is a function of GE/G~ and hence the firing rate of the cell is determined 
by the direct ratio of active excitatory and inhibitory synapses. 

l f G r  ! - G E  ~ I .- ,uo, this approximates to 
Gl Vt q- G E V F  

½( 1 -4.- ILo) 

l.e. V0 is a linear function of  GE and GI and hence the cell firing rate is deter- 
mined by a linear combination of active excitatory and inhibitory synapses. 

(ii) a ::- fl, st ~ I, o I. 
ct 

The expression for V., becomes ~(i-- ~ ~,-~) " 
GIV[- .  GEVr: 
1 ÷ G z ~  G v  
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If GI + GE ~ 1, this approximates to 
(Z 

GE v~ + ~ -  VF~ 

Gr 

G~Vj~ + GEVEa 
If GI @ GE ~ 1, this approximates to 

½(l + t~0) 

In the former case the cell firing rate is determined by the ratio GE/Gf, whereas 
in the latter case it is determined by a linear combination of G~ and G~. 

(iii) a - - l ,  fi ~ 1, ~ ~ 0. 
GwVE 

GtVi + /3 
I ~ - G E  

The expression for Vo becomes 
½(l + t~o) + G~ 

If GE >> I, the solution is uninteresting since it is independent of GE. 

If GE ~ 1, then Vo approximates to 

GE 
Vr + G I I  Vt,:fi for G~ >> 1 t-/to 

G1Vi + GEVE[3 Ibr Gt ~ 1 4 go 
½(1 + ~o) 

In the former case the cell firing rate is a function of" the ratio GE/G~, and in 
the latter case it is a function of their linear combination. 

(iv) a ~ 1, /3 ~ 1, 0 = 0. 

The expression for V0 becomes 

GEVE 
GiVla+ 1 + GE [¢ 

½(1 + #o) " 1 @ GI 

If GE >> 1, the solution is uninteresting since it is independent of GE. 
If GE ~ 1, then Vo approximates to 

GE 
v ~  + -d~- vE/~ 

GIVI~ -c- GEVE/3 
½(1 + ~o) 

for GI >~ 1 

for G[ ,~ 1 

1.e. the firing rate is dependent on the ratio GE/GI in the former case and on the 
linear combination of GE and GI in the latter case. 

hnplications of  the model 
Under certain conditions, i.e. Gj and GE sufficiently small, the cell firing rate 
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f(Vo) can signal their linear combination. For f(V0) to give a sensitive measure under 
these circumstances, ~V~ and fiVE - -  the synaptic driving potentials as seen at the 
firing zone - -  must be of sufficiently large amplitude. VE is known to be close to the 
short-circuited potential of the cell 5 and so fiVE will be fairly large - -  unless the syn- 
apses are too remote (which is unlikely even for the smallest dendritic branches). 
Addition is thus a feasible operation. However V~ is considerably smaller4: its mag- 
nitude appears to be only t/5-1/10 that of VE. in some cells it may even be zero. 

Subtraction can only be performed to a significant extent if VI is of sufficient 
size. In any case, V~ will be small compared to Vo;, and so - -  to have comparable 
effects - -  either the inhibitory conductance G~ must be correspondingly greater than 
the excitatory conductance GE or the inhibitory synapses must be located proximal 
to the excitatory synapses - - t h u s  making a large compared to [3. Another possibility 
is that the dendrites are always depolarized relative to the soma: the shift in mem- 
brane potential would cause a relatively large increase in V~ and a relatively small 
decrease in VE. 

In other conditions (i.e. GI or GE sufficiently large in the case ~J =- 1, GI sufficiently 
large and G~ sufficiently small in the case ~, -3- 0), the cell firing rate gives a measure 
of the ratio GE/G:t. This will be a sensitive measure provided GE/G~ is not too small 
compared to 1/fiV~. 

Extensions to the model 
In the above analysis,/zo has been taken to be constant. However,/~0 may be 

varied if there are synapses on the soma that cause a reduction in membrane imped- 
ance together with zero driving potential. Such synapses wilt reduce the size of the 
potential changes produced at the firing zone. 

A combination of  linear and divisor operations is thus feasible under the follow- 
ing conditions: 

(i) f(V0) is a fairly sensitive function of V0, 
(ii) additive excitatory synapses have relatively low conductivity and large 

positive driving potential; 
(iii) subtractive inhibitory synapses have relatively low conductivity and large 

negative driving potential; 
(iv) divisor inhibitory synapses, sited preferably on or near the soma, have 

relatively high conductivity and zero driving potential. 
Whenever the potential V0 is behaving linearly as a function of GE and G~, the  

effect of the soma conductance/~o is to reduce V0 by the factor 

1 
1 + # 0 "  

Now #o consists of two parts: a fixed 'resting' component,/Zr say, and a variable 
'active' component,/za say, due to the divisor synapses. 

~o ~ #r +/~a  
1 

. ' . V 0  oc 
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If division is to be proportional to the fraction p of  active input fibres, then the 
divisor cells have to be driven so that 

1 + / Z r  ~ /za = kp, where k is constant 

i.e. /za = k p - - l ,  where l --  1 + Ft. 

Hence the total divisor cell activity should be linearly proportional to the input 
fibre activity. This can only work, however, in the range p /> I/k, since ,u,, cannot be 

negative. That is, division can only take place if the level of input fibre activity is 

sufficiently high. 

Relevance to real nerve cells 

The model has a highly idealized form. Real nerve cells have several dendritic 
processes, which branch repeatedly and gradually taper. The branching will increase 

the effective shunting conductances between a dendritic input and the soma, whilst 
the tapering will increase the remoteness of  the input. However, the same qualitative 
results will hold. Thus linear behaviour will be closely approximated provided the 
normalized conductances remain small: and division will still be performed by the 
appropriate somatic synapses. To some extent, each main dendritic tree may function 

independently of the other dendritic trees, since the membranes and synapses of  
different dendritic trees are relatively remote from one another: this is particularly 
true if the cell soma contributes a large proportion of the total membrane area and 

if the dendrites have narrow diameters. In this case, the dendritic synapses may act 
in a linear fashion, providing a large e.m.f, in series with a high impedance (and 

thus behaving as constant current sources) whilst the somatic synapses perform the 
operation of division by shunting the synaptic currents through low impedance 

pathways. Even if one relaxes the constraint of low synaptic conductances in the 

division synapse 

- - - - 0  addition synapse 

subtraction synapse 

Fig. 2. Suggested dis t r ibut ion of  the different classes of  synapse on a nerve cell. Linearly interacting 
synapses, which behave as cons tant  current sources, are located on the dendrites. Division synapses, 
which act as low impedance shunts,  are located on the soma. 
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dendrites, so that individual dendritic trees no longer perform linear computations, 
it remains possible for the effects of separate dendritic trees to be combined linearly 
and for division to be performed by the somatic synapses. 

Some nerve cells - -  e.g. spinal motoneurones, cells of Clarke's column, Purkinje 
cells of cerebellum - -  could fit into this pattern. Others cannot unless some modifi- 
cation is made to the theory. Neurones that have dendrites which generate spikes, 
e.g. hippocampal pyramidals lz and lamina 4ceUs of  the spinal cord 14, cannot be 
accommodated within this theory unless one supposes there to be trigger z o n e s -  be- 
having as postulated in this model - -  sited in the convergent regions of the dendritic 
trees. The synapses on the main dendritic shafts would then have some further special 
action, e.g. signalling when to modify 1'~. 

There is plenty of evidence for the linear addition of excitatory synaptic po- 
tentials a,6,11 and for the division of excitatory synaptic potentials by inhibitory 
synaptic potentials6,11,1L Evidence for linear subtraction by inhibitory synaptic po- 
tentials is less common but nevertheless exists 11. The postulated firing mode of the 
nerve cell receives support from experiments on the intracellular injection of  constant 
currents into neurones 7,s. In effect, a steady current corresponds to a constant poten- 
tial at the trigger zone. 

APPENDIX 

Derivation o f  the solution f o r  the case x t  <_'- xE 

We start with the differential equations (1) to (3) and the boundary conditions 
(4) to (10). 

1 b2V 
From (1) and (2), im (I I) 

R1 ~x 2 
Rm ~2V ~2V 

- 2 2 - -  ( 1 2 )  From (11) and (3), V -- Rt ~x e ~x e 

, /  R,n 
where 2 ~ l/  

R a  

The general solution of (12) is 

- -x/2 V - = : A e  x'/2 -- B e (13) 

I ( - -  A e x/2 e ---x/A) Using (1), we get il .... /~R1 t B (14) 

Let the particular solution be 

A0e x/2 + Boe --x'/2 x ~< xi 

V := ~ Ale x/2 -]- B l e  - X / 2  x i  ~< x ~< XE 

I A2e x/2 ~- B2e - -x/2  x~ <~ x 
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with corresponding equations for it. 
Substituting for it in (8), we obtain 

1 

2R~ 
- -  ( - -Ao  + Bo) == -- i0 

i.e. 
1 

i o -  2 R 1  - - - - -  ( A o - - B o )  (15) 

N o w V o  = (V)x:O = A o +  Bo 

Thus, using (5) and (15), we have 

Ro 
A o +  Bo --  ( A o - - B o )  

2R1 
Putting - -  /~(), we obtain 

Ro 

( I - - ~ o )  A o - - ( 1 % - F ~ o ) B o = 0  

• ". Bo 1 - - ¢ ~ o  A o  
1 ~ /~o 

2 
and Vo -- Ao 

1 q po  

Condit ion (4) entails immediately that  A,z = 0 

Condi t ion (6) gives 

A0e xff2 '7 Boe - x t / 2  = Ale xl,/2 ]_ Bte - x f f ) "  

--xt/~ 
Putt ing fz = e . we obtain 

A o @  Boot z - A 1 - B t ¢ !  2 = 0  

16) 

17) 

18) 

(19) 

(20) 

Likewise condit ion (7), together with (19), leads to 

where 

A1 + BI/'~ 2 - -  B2fi" : 0 

--XE/2 
[.¢ =-- e 

(21) 

Condit ion (9) gives 

1 1 
( - -A1/~  q- Bin) - -  = -~ -  ( - -Ao/~  " Bort) 

,;,RI A N I  

VI l 
RI RI 

(A1/.  + Bird) 

Multiplying through by n).R~ and collecting terms, 

Ao---Bo¢12 q.- \ Rt  
(2R1 

I ) Bl<z :> 
,iR1 

RI 
(tVl 
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).R~ 
Putting G~ - . we obtain 

2Rt 

Ao---  Bo~t "~ ~- (2Gj - -  I)A1 v (2GI -I l )Bla  2 . .  2GtVta  (22) 

Similarly condit ion (10), together with (19), leads to 

A1 - -  Blfl" -! (2GE -v l)Befl z ~- 2GEVI.:p: ~23) 

Adding (20) and (22), 

2Ao -~- (2Gr - -  2)A1 -~.- (2GI)Bla 2 = 2 GrVl~t 
i.e. A o - - ( I - - G I )  AI ~ G la2Bl=-GlVl~ t  (24) 

Multiplying (21) by (2GE q- 1) and adding to (23), 

{(2GE 4- 1) !-. I} Al -% ~(2G~ -}-- 1) .... 1~ Blfl-" -=.. 2G~;VEf/ 

i.e. (1 i- GE) AI -t GEl32 B1 • GEVEfi (25) 

Substituting (I 7) into (20) gives 

A,, I I + ,," . _  . .  0 
~1 ~-- /zo/~ 

.'. {(i ~- po) --t- (I - - y o ) a " }  Ao- - - ( l  .~- po) A~ - (1  i. #o) B~¢F ..... 0 (26) 

Now (24), (25) and (26) are three simultaneous equations in the three unknowns Ao, 
A~ and A~.. 
The standard solution for simultaneous equations of  the form 

I~x + - m ~ y .  ntz=-, p~ 
12x .~- m~y-~- n~z := p,: 
13x ~- m3y '- n3z --- p~ 

(m3n~--men3)p~ + (m~n3--m3nl)pz 9 (m~nx--m~n2)pz 
is  X = . . . .  

(mzne--m~n3)lx ~- (mln3--m.~n~)l~ ~- (m~n~--mangl.~ 

etc. 

Ao - " 

Thus, substituting for the dummy constants above, we have 

{.--(1 -t-#o)Gvfl'-' + (1 + G E )  (1 -!-/~o)a2 }GIVIa -!- { ( I - -GI) ( I  ~- uo)a2+( l  -t-/~o) GIa2}GgVE~ 
{-(1 q--/~o)G~/~z + (1 + GE)(1-~--po)a z} -i  {( l - -Gr)G~t6z-k (I - G~)GIaZ}{(I + # o ) + ( 1  - -po )a  z } 

(27) 

The numera tor  of  (27) simplifies to 

i.e. (1 .-k po)a ~ [{I -v (1 - - o ) G F } G I V ) a  - GgVEfl] (28) 
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where  o - -  fi~/c~ 2 

The denominator  of  (27) can be rewritten as 

(1 -PGE) (1 4-ffo)~z'-' - -  (I i-,z~o) GE/'5'" 

- {( l-4-/~o) -~ (1-- ,uo)~ e } {GE?'"  I- (~*~ ~ G E ~ * - - - G E f i - ) G ~  
i.e. [(1 )-/to)(z 2 + (l-4/~o)r~'-'G),:] 4 (1 ,u(!)GEfiO. e 

{(1 + / ~ )  _c (l--uo)~t e } {d-'4 (a'-'--t~'~)GE}G~ 

Taking the common factor ct'-' outside and rearranging the terms, we get 

rz2 [(1~ ~0) q {(14 ,t~0) -~ (l--ffO)~ze}{l "t ( I - - ' 2 ) G E }  G~ + 

' { ( l + f f o )  + (l--,uo)fi ~} GEJ 

Hence, using (18), (28) and (29), we finally obtain 

V0 Ao 

2 1 h fie 

1 ~ ( I - -L~)GE } G t V I ' z  + GEV~:(~ 

(29) 

( l + f f o ) +  [ ( l_ f fo)  4-(1--,u0)~z 2] { l - t  ( 1 - - o ) G E } G ] +  [ (14ff0)4  ( l - - f ro) /=]Gg 
(30) 
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