
Quantifying the Information in Auditory-Nerve
Responses for Level Discrimination

H. STEVEN COLBURN,1 LAUREL H. CARNEY,1 AND MICHAEL G. HEINZ
1,2

1Hearing Research Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
2Speech and Hearing Bioscience and Technology Program, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

Received: 20 November 2000; Accepted: 4 December 2002; Online publication: 14 March 2003

ABSTRACT

An analytical approach for quantifying the informa-
tion in auditory-nerve (AN) fiber responses for the
task of level discrimination is described. A simple
analytical model for AN responses is extended to in-
clude temporal response properties, including the
nonlinear-phase effects of the cochlear amplifier. Use
of simple analytical models for AN discharge patterns
allows quantification of the contributions of level-
dependent aspects of the patterns to level discrimi-
nation. Specifically, the individual and combined
contributions of the information contained in dis-
charge rate, synchrony, and relative phase cues are
explicitly examined for level discrimination of tonal
stimuli. It is shown that the rate information provided
by individual AN fibers is more constrained by in-
creases in variance with increases in rate than by sat-
uration. As noted in previous studies, there is
sufficient average-rate information within a narrow-
CF region to account for robust behavioral perform-
ance over a wide dynamic range; however, there is no
model based on a simple limitation or use of AN in-
formation consistent with parametric variations in
performance. This issue is explored in the current
study through analysis of performance based on dif-
ferent aspects of AN patterns. For example, we show

that performance predicted from use of all rate in-
formation degrades significantly as level increases
above low–medium levels, inconsistent with Weber’s
Law. At low frequencies, synchrony information ex-
tends the range over which behavioral performance
can be explained by 10–15 dB, but only at low levels.
In contrast to rate and synchrony, nonlinear-phase
cues are shown to provide robust information at
medium and high levels in near-CF fibers for low-
frequency stimuli. The level dependence of the dis-
charge rate and phase properties of AN fibers are
influenced by the compressive nonlinearity of the
inner ear. Evaluating the role of the compressive
nonlinearity in level coding is important for under-
standing neural encoding mechanisms and because
of its association with the cochlear amplifier, which is
a fragile aspect of the ear believed to be affected in
common forms of hearing impairment.

Keywords: neural coding, intensity discrimination,
nonlinear phase, signal detection theory, auditory-
nerve modeling

INTRODUCTION

The focus of this article is the classical problem of level
encoding and its relation to the physiological response
properties of auditory-nerve (AN) fibers. The pio-
neering work in this area is a series of papers from
Siebert (1965, 1968). Siebert took a mathematical
modeling approach to derive expressions for the sen-
sitivity index for performance in intensity discrimina-
tion. Siebert assumed that the action potentials on a
single AN fiber could be represented mathematically
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as a stochastic point process, specifically a Poisson
process. He further assumed that the variability of the
firing times on each neuron was statistically inde-
pendent from fiber to fiber, consistent with the results
of Johnson and Kiang (1976). With these assumptions,
the only additional information needed to specify the
model completely was the rate of firing for each fiber
and, most important, the dependence of this firing
rate on stimulus level. Siebert assumed a convenient
form for this dependence that allowed an analytic so-
lution for the performance of an ideal observer (ba-
sically the best performance that could be achieved
given the statistical nature of the firing patterns) based
on the complete set of neural firings. The current
study extends Siebert’s work with analytic expressions
that allow explicit description of the level dependence
of the temporal response. A simple description of the
rate function for each nerve fiber is specified as a
function of time and level, and a nonstationary Pois-
son process is assumed. Analytical performance
measures are derived that allow comparisons among
the different information sources regarding the level
of the stimulus, including the average rate of re-
sponses, and the temporal synchronization and rela-
tive phases of responses at low frequencies.

Although many people have extended Siebert’s
work with computations of performance based on
more detailed assumptions about peripheral coding
(e.g., Goldstein 1980; Delgutte 1987; Viemeister 1988;
Winslow and Sachs 1988; Winter and Palmer 1991;
Huettel and Collins 1999; Heinz et al. 2001a,b; re-
viewed by Delgutte 1996), most of these studies were
essentially computational in nature. The computa-
tional approach does not take advantage of mathe-
matical expressions that give insight into the
relationship among the various sources of informa-
tion and parameters of dependence. In addition,
these studies have shown that the robust level-
discrimination performance demonstrated by human
listeners is not accounted for by the optimal use of
average-rate information in the AN. Thus, it is of in-
terest to examine whether the optimal use of tem-
poral information in AN responses provides a better
account of robust performance.

In the following section, general results are de-
rived that are used throughout the article. Then,
analytical results based on average rate and on tem-
poral information are presented in separate sections,
followed by general discussion.

THEORETICAL CALCULATIONS

General methods for characterizing performance

A convenient parameter for summarizing empirical
performance and theoretical predictions is the sen-

sitivity per decibel d¢(Heinz et al. 2001a; based on the
sensitivity-per-Bel measure of Durlach and Braida
1969; Braida and Durlach 1972). This parameter is
used here because it has been shown to be generally
appropriate for intensity discrimination experiments
and allows convenient combination of information
from independent sources. Specifically, the sensitiv-
ity per decibel d¢ is defined in terms of the usual
sensitivity coefficient d¢ between two levels L and L +
DL (Rabinowitz et al., 1976; Buus and Florentine
1991):

d0ðLÞ ¼ d 0ðL;L þ DLÞ
DL

ð1Þ

where L and L + DL are measured in decibels (SPL).
If the just-noticeable difference (JND) in level is de-
fined by the value of DL giving unity d¢, then the JND
is equal to 1/d¢. It follows directly that Weber’s Law,
which refers to a constant JND as a function of level,
corresponds to a d¢ that is independent of the refer-
ence level L. Similarly, the ‘‘near miss’’ to Weber’s
Law, which refers to the slight improvement in level
discrimination of tones that has been experimentally
observed as level increases (McGill and Goldberg
1968b; Florentine et al. 1987), corresponds to a d¢(L)
that increases with L.

The theoretical significance of the parameter d¢
can be appreciated from the combination of Eq. (1)
with the definition of d¢(L, L + DL) from signal de-
tection theory. Specifically, if it is postulated that
decisions are made by comparing the value of an
underlying random variable X (the decision variable)
with a threshold that is chosen for each experi-
ment in a manner that accounts for bias and judg-
ment factors, then achievable performance can be
characterized by a single parameter. This parameter
is d¢(L, L + DL) and is defined by the relation

½d 0ðL;L þ DLÞ�2 ¼ fE ½X ;L þ DL� 	 E ½X ;L�g2

Var½X ;L� ð2Þ

where E[X; L] and var[X; L] are the expected value
and variance of X given the level L. This form of the
equation for d ¢ assumes that the variance of X for L
and L + DL are approximately the same, which is true
for the level increments of interest, i.e., near thresh-
old. The d¢ measure is convenient because (d¢)2 [and
(d ¢)2] is an additive parameter for an optimum linear
combination of uncorrelated decision variables. That
is, if X is given by the relation

X ¼
X

m

cmYm ð3Þ

where the cm are weighting parameters and the Ym are
uncorrelated random variables, then the best per-
formance (maximum d¢) that can be obtained
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(allowing any choice of the parameters cm) is given
by

ðd0Þ2 ¼
X

m

ðd0mÞ
2 ð4Þ

where d¢m is the sensitivity per decibel for the variable
Ym and is defined by relations parallel to Eqs. (1) and
(2). This additivity theorem for (d¢m)2 is especially
significant for constant-variance Gaussian (normal)
or Poisson random variables where the differences in
the distributions of the decision variables are deter-
mined by changes in the means. In these cases, the
optimum linear combination of the random variables
results in performance as good as or better than any
nonlinear combination.

The general calculation of the best achievable
performance as limited by the statistical properties of
the data can be done with the likelihood ratio test. In
this test, a decision is based on the relative probabil-
ities (or probability densities) of the observations
under the two hypotheses under consideration. In
other words, to discriminate between the levels L and
L + DL, one calculates the ratio of the conditional
probabilities of the available observations (condi-
tional on each of these levels) and then compares the
ratio to a threshold. This threshold is determined by
the chosen performance criterion and is based on
a priori probabilities and the relative costs and bene-
fits of the possible outcomes. Since comparison to a
threshold is not affected by monotonic transforma-
tions of both sides of the inequality, the log-likeli-
hood ratio (formed by taking the logarithm of the
likelihood ratio and the threshold) is commonly used
for specific computations. In the case of statistically
independent observations, the log operation results
in a summation of the log-likelihood ratios for the
individual observations.

Performance based on Poisson observations

Performance can be characterized for the specific
case of a nonstationary (time-varying) Poisson proc-
ess, which is specified by r(t, L), the instantaneous
rate as a function of time t and level L (e.g., Siebert
1970; Rieke et al. 1997; Heinz et al. 2001a). The
likelihood ratio test can be shown to be equivalent to
the following test:

XN

i¼1

ln
r ðti ;L þ DLÞ

r ðti ;LÞ

� � }L þ DL}
>
<
}L}

C ð5Þ

where the set of ti are the times at which discharges
occur for a given stimulus presentation, N is the total
number of discharges (the count) during the pres-
entation of the stimulus, and C is the threshold. This

inequality [lneq. (5)] describes a processor for AN
responses that could perform the discrimination task
when the rate function r(t, L) is known to the central
processor. The processor calculates the ratio of the
two rate functions at each observed discharge time ti,
sums the log of the ratio across all discharges, and
compares the value of the sum to a threshold. This
processor is evaluated below with different assump-
tions about the rate function r(t, L).

In the case that r(t, L) is independent of time t
(during the response to the stimulus), the summand
in Ineq. (5) is independent of t, and the optimum test
reduces to

N ln
rðL þ DLÞ

r ðLÞ

� � }L þ DL}
>
<
}L}

C ð6Þ

where the count N contains all relevant information
from the Poisson process and C is again the threshold.
Since performance depends only on N, the general
results for a decision variable X given above can be
applied here. It follows directly from the statistics of the
(Poisson) variable N that the parameter d¢ is given by

½d0ðLÞ�2 ¼ 1

ðDLÞ2

fE ½N jL þ DL� 	 E ½N jL�g2

VarðN Þ

¼ T
½r ðL þ DLÞ 	 r ðLÞ�2

ðDLÞ2rðLÞ

ffi T
½dr ðLÞ=dL�2

r ðLÞ

ð7Þ

where r(L) is the value of r(t, L) during the stimulus of
duration T. For the final approximation in Eq. (7), it is
assumed that r(L) varies continuously with L over the
increment DL so that the derivative exists, and r(L +
DL) + r(L) + (DL)[dr(L)/dL]. Since L and DL are
measured in decibels, this approximation is only
meaningful if the derivative of the function r(L) is
taken with respect to L in decibel units. The expression
in Eq. (7), which is used extensively in subsequent
sections, is equivalent to the result provided by Siebert
(1965, 1968).

In order to include the information provided by
the specific times of the neural firings, (i.e., temporal
information), an expression is required for d¢ when
the decision variable is equal to the left side of Ineq.
(5) and the rate r(t, L) depends on t. Using approx-
imations similar to those used for Eq. (7), the
resulting expression for d¢ is given by

½d0ðLÞ�2 ¼
Z T

0

1

rðt;LÞ
@rðt;LÞ

@L

� �2

dt ð8Þ

A detailed derivation of this expression can be
found in Heinz et al. (2001a).
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Performance based on a simple description of
the rate function for AN responses

Attention is restricted to a simple analytical expression
for r(t, L) that is a good description of the discharge
patterns in response to tones for many AN fibers (see
Colburn 1973). Specifically, it is assumed that r(t, L)
for a tonal stimulus at frequency f is given by

r ðt;LÞ ¼ r ðLÞ
I0½g ðLÞ�

exp½g ðLÞ cosf2pft þ HðLÞg� ð9Þ

This expression for r(t, L) can be understood by not-
ing that the shape of the time dependence is de-
scribed by an exponentially rectified cosine: exp{g(L)
cos(2pft + Q(L))}. The instantaneous discharge rate is
monotonically related to the sinusoid in a way com-
patible with most AN data. When the value of the
sinusoidal function is large and positive, the instan-
taneous discharge rate is large and positive; when the
value is large and negative, the rate approaches a value
near zero. The size of the level-dependent parameter g
determines the degree of synchrony. This synchrony
parameter g is related to the familiar synchrony index
or vector strength VS by the relation VS = 2I1[g]/I0[g].

To be compatible with AN data, g(L) must increase
as a function of level to a maximum value that de-
pends on the stimulus frequency (Johnson 1980).
Note that the modified Bessel function I0[g] Eq. (9) is
equal to the time average of the exponentially recti-
fied cosine term and thus, the average discharge rate
is given by r(L). The average rate r(L) must be spec-
ified independent of the synchrony g(L) to separate
the contributions of rate and synchrony cues in the
computations below. Finally, note that the phase pa-
rameter Q(L) depends on level, and the phase of the
response could provide information about stimulus
level, as discussed below.

The r(t, L) given in Eq. (9) can now be used to
compute an explicit expression for the sensitivity in-
dex as represented in Eq. (8). Ignoring edge effects
due to integrating over fractions of periods, one can
show that the sensitivity index is given by the sum of
three terms:

½d0ðLÞ�2 ¼ T

rðLÞ
dr ðLÞ

dL

� �2

þ TrðLÞ dg ðLÞ
dL

� �2d2 ln I0½g ðLÞ�
dg 2

þ TrðLÞg ðLÞ dHðLÞ
dL

� �2d ln I0½g ðLÞ�
dg

ð10Þ

These terms arise in the following manner: The
integrand in Eq. (8) can be rewritten in terms of the
rate times the square of the partial derivative of the
log rate. When the log of r(t, L),

ln½rðt;LÞ� ¼ ln½r ðLÞ� 	 ln½I0ðg ðLÞÞ�
þ g ðLÞ cosð2pft þ HðLÞÞ;

ð11Þ

is inserted into the equation for (d¢)2 [Eq. (8)], the
partial derivative with respect to L results in a sum of
derivatives of the terms on the right side of Eq. (11).
The square of the derivative thus produces several
cross terms within the integral, which can be solved
and simplified to arrive at Eq. (10). The terms in the
solution can be factored into those depending upon
the derivative of rate with respect to level, dr(L)/dL;
those depending upon the derivative of synchrony
with respect to level, dg(L)/dL; and those depending
on the derivative of the phase with respect to level,
dQ(L)/dL. Thus, the three terms in Eq. (10) repre-
sent the separate contributions of changes in count
(or mean rate), synchrony, and phase to optimum
level-discrimination performance. Note that the first
term is consistent with the results from the count-
based Poisson model described above Eq. (7).

The analysis resulting in Eq. (10) implicitly as-
sumes that the processor makes full use of knowledge
of the statistics of the process, which includes com-
plete knowledge of the function r(t, L). Accordingly,
knowledge of the time origin of the stimulus, and
thus a phase reference, is assumed in order to use all
of the synchrony and nonlinear-phase information.
The third term in Eq. (10) expresses the maximum
information contained within the phase dependence
on level. When no absolute phase reference is avail-
able (as is generally believed), non-linear phase in-
formation is available from differences in timing of
discharges across fibers tuned to different frequen-
cies. This issue is addressed below.

Performance of multiple-channel models:
several combination rules

The peripheral auditory system is clearly a multiple-
channel structure, and any serious attempt to relate
level discrimination to peripheral physiology must
allow cross-channel combination of information. A
fundamental consideration for understanding multi-
ple-channel models is how activities on the individual
channels are combined. There are, of course, an
unlimited number of possible combination rules, and
predicted behavior depends on this choice. The most
important rule for this analysis is probably the opti-
mum rule: If the activities on the individual channels
are specified probabilistically (including the inter-
channel statistical dependencies), then signal detec-
tion theory allows calculation of the best performance
achievable by any processing scheme. Models exist,
possibly ad hoc and complex, that can achieve any
level of performance between this ‘‘best’’ or optimum
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performance and chance performance. As in most
black-box modeling tasks, the merit of a given model
is usually based on its simplicity and economy of as-
sumptions relative to the amount and complexity of
the data it is able to predict or describe. In this sec-
tion, several combination rules are outlined that have
been suggested for level discrimination.

Three specific rules illustrate some of the impor-
tant issues. The first rule is the optimum combination
rule, suggested and analyzed by Siebert (1965, 1968)
for AN fibers and used by Florentine and Buus (1981)
for combining channels in an excitation-pattern
model. As noted above, this rule allows computation
of the limitations imposed on performance by pe-
ripheral encoding when individual channels corre-
spond to individual nerve fibers. The second rule,
suggested by Zwicker (1956) and Maiwald (1967b,c),
is based on the use of a single channel at a time. This
channel is the one that results in the best perform-
ance in a given situation. The third rule, analyzed by
Goldstein (1974) for loudness judgments and by Te-
ich and Lachs (1979) for discrimination, postulates
that the sum of the counts from all fibers, i.e., the
total count, is the decision variable.

For each of these rules, the relation between the
total sensitivity per decibel (d¢op, d¢sc, or d¢tc, for op-
timum, single-channel, or total-count rules, respec-
tively) and the statistics of the individual channels can
be found. The relation is particularly straightforward
for the optimum combination rule when it is assumed
that the activities on the channels are Gaussian or
Poisson and uncorrelated. In this case the optimal
combination is a weighted sum of the individual-
channel decision variables (when the distributions of
the decision variable differ only in the means), and
the squares of the individual d¢m add; that is,

ðd0opÞ
2 ¼

X
m

ðd0mÞ
2 ¼ 1

DL

� �2X
m

ðDEmÞ2

Vm
ð12Þ

where m indexes the individual channels. This rela-
tion also holds more generally (i.e., for distributions
other than Gaussian or Poisson) whenever the final
decision variable is specified to be an optimally
weighted linear sum of the statistically independent
decision variables for the individual channels. For the
single-channel rule, d¢sc is simply the maximum value
of the d¢m (maximum over all m); that is,

d0sc ¼ max
m

ðd0mÞ:
ð13Þ

The third rule, the total-count-decision-variable
case, results in the relation

ðd0tcÞ
2 ¼ 1

DL

� �2ð
P

m DEmÞ2P
m Vm

ð14Þ

where DEm is the change in the mean of the decision
variable on the mth channel and Vm is the corre-
sponding variance. The total variance is the sum of
the individual variances due to the assumption of
statistically uncorrelated channels.

These relations can be compared and understood
by considering a few special cases. If there is a single
channel, performance is the same for all cases. If
there are many channels but only one channel has a
significant change in the mean for the two levels be-
ing discriminated, the optimum decision rule looks
only at this channel (the same is true for the single-
channel rule); however, the total count rule adds all
channels. The variance therefore increases dramati-
cally but the change in the mean remains equal to the
single-channel case, thereby degrading performance
relative to the other two rules. Another useful exam-
ple is the case of N statistically identical channels. In
this case, the optimum rule and the summation rule
show an improvement in d¢ by a factor of

ffiffiffiffiffi
N

p
relative

to the single-channel rule, i.e., d¢op = d¢tc =
ffiffiffiffiffi
N

p
d¢sc.

As a last general step in preparation for the specific
models addressed below, consider a set of channels
with identical rate-level functions except for their
thresholds, which are distributed according to a
density function n(L). In these conditions, the sum
over m above becomes a convolution of the threshold
distribution, n(L), with [d¢(L)]2, the squared sensi-
tivity per decibel of a fiber with Lthr = 0. The opti-
mum and summed-channel combination rules then
result in the following equations:

ðd0opÞ
2 ¼ ½d0ðLÞ�2 � nðLÞ ð15Þ

ðd0tcÞ
2 ¼ 1

DL

� �2 ½DEm � nðLÞ�2

Vm � nðLÞ

( )
ð16Þ

where * represents the convolution operation and all
quantities except DL are functions of the level L.

RESULTS: LEVEL DISCRIMINATION BASED ON
AVERAGE-RATE INFORMATION

The ability of single-fiber counting models to
explain Weber’s Law

The degree to which the average discharge rate of
individual AN fibers can account for robust level
discrimination over their limited dynamic range de-
pends on the shape of their rate-level function and on
the level dependence of the variance in their re-
sponse. First, several simple rate-level functions are
considered for the Poisson case to evaluate the rela-
tionship between the requirements for single AN
fibers to produce Weber’s Law and known physio-
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logical response properties. The sensitivity per deci-
bel d¢ (and thus the JND) can be calculated if the rate-
level function r(L) is specified. Second, the effects of
non-Poisson variance on the ability to explain We-
ber’s Law are explored by evaluating an existing
model that includes dead-time refractoriness.

The effect of rate-level shape. The first rate-level
function considered is given by the following equa-
tions in which all levels are in decibels re: threshold:

r ðLÞ ¼ SR for L � 	5

¼ SR þ 0:25ðL þ 5Þ2 for 	 5 < L � þ5

¼ SR þ 5L for 5 < L � Lsat

¼ SR þ 5Lsat for L > Lsat

ð17Þ

where SR is equal to the spontaneous rate of dis-
charge, and Lsat is the level above which the rate
saturates. This function is plotted in Figure 1 for a
value of Lsat equal to 40 dB and for several values of
SR. It can be verified that, for this choice of r(L), (d¢)2

in Eq. (7) is given by

ðd0Þ2 ¼ 0 for L � 	5

¼ T
ð0:25ÞðL þ 5Þ2

SR þ ð0:25ÞðL þ 5Þ2 for 	 5 < L � þ5

¼ T
25

SR þ 5L
for 5 < L � Lsat

¼ 0 for L > Lsat

ð18Þ

In Figure 2, (d¢)2 vs. L is plotted for T = 0.1 s and
three values of SR, corresponding to the three classes
of fibers suggested by Liberman (1978): those with
low spontaneous rates (Fig. 2A with SR = 0.5 sp/s),
medium spontaneous rates (Fig. 2B with SR = 10
sp/s), and those with high spontaneous rates (Fig. 2C
with SR = 50 sp/s). Saturation at Lsat makes the
function zero above Lsat. The dashed curves show the
JND in decibels as a function of L for a single channel
with the corresponding (d¢)2. Note that all functions
are plotted relative to a threshold (which would vary
among AN fibers).

Several observations are relevant here. First, note
that a single low-to-medium spontaneous-rate fiber
provides sufficient rate information for a JND of 3 or
4 dB at levels just above threshold. When a longer
duration, say T = 0.3 s, and a higher slope, say 10 sp/
s/dB (achieving a discharge rate of 200 sp/s at 20 dB
above threshold), are used in the calculations, a sin-
gle fiber provides sufficient rate information for a
JND of approximately 1 dB.

Second, note that high-SR fibers provide signifi-
cantly less information in terms of average discharge

rate than do low-SR fibers. In Figure 2, (d¢)2 for a low-
SR unit is approximately three times larger than that
for a high-SR unit. This effect comes from the larger
variance associated with higher means in Poisson
random variables. The details of the rate-level func-
tions vary among the different spontaneous rate
groups (Sachs and Abbas 1974; Winter et al. 1990;
Schoonhoven et al. 1997); however, a more precise
description of the rate-level functions would be ex-
pected to have only a small quantitative, but not
qualitative, effect on the calculations and conclusions
of this study.

Third, the shape of the dependence of (d¢)2 for a
single Poisson channel with the basic rate-level func-
tion of Eq. (17) differs grossly from psychoacoustic
observations. It is suggested by the results plotted in
Figure 2 [and is easily verified analytically, see Eq.
(7)] that whenever r(L) is increasing linearly (on a dB
scale), (d¢)2 is decreasing with level (due to increased
variance with increases in rate). There is no physio-
logical evidence of fibers with rate-level functions that
increase faster than linearly over a range greater than
10 or 20 dB. Thus, it can be concluded that a single
Poisson channel with a rate-level function compatible
with available physiology cannot provide sufficient
information even for Weber’s Law, let alone im-
provement of performance with level, or ‘‘the near
miss to Weber’s Law.’’

The second rate-level function considered is given
by

r ðLÞ ¼ cL2 for L > 0

r ðLÞ ¼ 0 for L � 0
ð19Þ

where L is in dB relative to a threshold reference
value. It is easily verified that Weber’s Law predictions

FIG. 1. The rate-level function used to describe the rates of audi-
tory-nerve fibers in the model. Levels are plotted in reference to
threshold. The rate saturates at 40 dB above threshold. SR: sponta-
neous rate. SR = 0.5, 10, and 50 sp/s are shown.
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are obtained from a Poisson channel with this rate-
level function. In this case d¢ is equal to a constant
value [10

ffiffiffiffiffiffiffiffiffiffiffiffi
ð4cT Þ

p
] that is independent of L for levels

above threshold. It follows that a near-miss prediction
on a single Poisson channel requires a rate-level
function that grows faster than quadratically on a
decibel level scale.

The last rate-level function considered has an ex-
ponential shape (on a dB level scale). This type of
function was used in the counting models of McGill
and Goldberg (1968a,b) and Luce and Green (1974).
In both models, count is a Poisson (or nearly Poisson)
random variable with a rate-level function that can be
written as

r ðLÞ ¼ aebL ð20Þ

where a and b are constants and L is the level in dB re:
some reference level Lref. In this case, the resulting
expression for (d¢)2 is Tab2ebL. The result is a JND that
decreases with increasing level, and thus these models
can predict the observed near-miss behavior. Howev-
er, rate-level functions with this shape have not been
observed in AN fibers and at best could represent
combinations of many fibers.

Since single-channel Poisson counting models of
level discrimination require rate-level functions that

do not represent physiological data directly, we next
consider whether deviations from Poisson variability
can account for Weber’s Law in single AN fibers.

The effect of deviations from Poisson variability. The
importance of the assumptions for the statistical
properties of the model discharge patterns is illus-
trated by single-channel predictions using the for-
mulae of Teich and Lachs (1979). They give
expressions for the mean and variance of the count
for a dead-time-modified Poisson process, assuming
that the rate of the original Poisson process grows
proportionally to stimulus level in decibels. The mean
and variance of the count in the modified process are
given by

Mean count ¼ ðTE=ErefÞ=½1 þ ðTE=ErefÞðs=T Þ� ð21Þ

and

Variance of count ¼ ðTE=ErefÞ=½1 þ ðTE=ErefÞðs=T Þ�3

ð22Þ

where E is the stimulus energy, Eref is a threshold
constant, T is the duration, and s is the dead time. If
(d¢)2 is computed for a single channel with these
statistics, one obtains

ðd0Þ2 ¼ ½1=ð20 log e Þ�2 � mean count

ffi ð1=80Þ � mean count ð23Þ

Thus, (d¢)2 for a single channel would saturate and
become independent of level.

This example shows the importance of variance
assumptions, since the mean rate-level function
[mean count in Eq. (21) divided by T] has a shape
very similar to Eq. (17) with Lsat = 20 dB (if thresh-
olds are adjusted), and yet the predicted (d¢)2 in Eq.
(23) is dramatically different than that given in Eq.
(7) and shown in Figure 2. Also, a saturating rate-level
function can provide information sufficient for We-
ber’s Law and even at a d¢ level consistent with a JND
of 0.3 dB (d¢ = 3.2) when s/T = 0.005.

However, a question for this article is how well
non-Poisson models of this type describe AN behav-
ior. The mean function in the model of Teich and
Lachs (1979) is similar to observed rate-level func-
tions; the variance, however, is clearly inconsistent
with available data near saturation. For example, with
a saturation rate of 100 sp/s, the variance of the
count over 1 s at a rate of 90 sp/s is less than unity,
and the coefficient of variation (the ratio of the
standard deviation to the mean count) is less than
0.01. Furthermore, this relative variability continues
to decrease inversely proportionally to the stimulus
energy because the model fibers are stimulated to
discharge almost immediately upon the conclusion of
the fixed dead time after each firing. AN data are

FIG. 2. The square of the sensitivity index (d¢)2 for rate cues as a
function of level L in decibels (solid curves) for model fibers with
three different spontaneous rates of discharge: (A) SR = 0.5, (B)
SR = 10, (C) SR = 50 sp/s. Note that these values of (d¢)2 have been
multiplied by a factor of 100 (in this figure and Fig. 5 only) in order to
plot them on the same axes with the just-noticeable difference (in
decibels) as a function of L (dashed curves). Stimulus duration was
100 ms.
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closer to the Poisson assumption. For example, the
count data from Young and Barta (1986, their Fig. 6a)
show that a count of 20 discharges per 200 ms (100
sp/s) has a standard deviation of approximately 3
discharges per 200 ms. (For a count of 100 discharges
over a full second, this would correspond to a stand-
ard deviation of 3

ffiffiffi
5

p
= 6.7). Thus, the coefficient of

variation at this mean count would be 0.067, which is
roughly a factor of 1.5 less than expected for a Pois-
son process (0.1), but much greater than the model
used by Teich and Lachs (1979). It follows that this
non-Poisson model does not appropriately describe
AN patterns and thus overestimates the amount of
AN information at high levels.

This example illustrates the extent to which vari-
ance must be reduced from Poisson statistics to pro-
duce Weber’s Law and that this reduction is much
greater than has been reported for AN fibers (e.g.,
Young and Barta 1986; Delgutte 1987; Winter and
Palmer 1991). Thus, the deviation from Poisson dis-
charge-count variance observed in AN fibers cannot
account for the inability of Poisson counting models
to predict robust level encoding.

The ability of multiple-CF counting models to
explain the ‘‘near miss’’ to Weber’s Law

Since single-fiber models cannot simultaneously be
consistent with physiological observations and psych-
ophysical observations, multiple-channel models are
considered. When models for level discrimination of
narrowband stimuli are considered, the spread of
excitation to fibers with CFs that differ from stimulus
frequency becomes a central issue. This section be-
gins with a description of a simple AN model (Siebert
1965, 1968) to demonstrate how a population of AN
fibers with limited dynamic range can produce We-
ber’s Law. Several modifications to Siebert’s model
are then discussed in terms of their ability to produce
the ‘‘near miss’’ to Weber’s Law.

Siebert’s model of Weber’s Law based on spread of

excitation. Unlike many other modeling studies that
also explicitly included a spread of excitation over CF
(e.g., Zwicker 1956; Maiwald 1967a,b,c; Florentine
and Buus 1981), Siebert (1965, 1968) included the
AN discharge patterns explicitly in his multiple-CF
model. Siebert (1965, 1968) assumed optimum
processing of a population of Poisson counts, which
were based on a saturating rate-level function that was
the same for all fibers except that tone threshold
varied with CF based on AN frequency tuning. With
these assumptions, level discrimination using fibers
within a narrow CF band is poor except for a narrow
range of levels near threshold (as discussed above), so
that the robustness of performance across level is al-
most completely determined by the spread of excita-

tion over CF bands. Siebert (1965, 1968) showed that
Weber’s Law is predicted for tonal stimuli by this
model if one assumes a uniform-in-log-frequency
distribution of CFs, and two-piece linear tuning
curves with constant slopes (in decibels versus log-
frequency axes). Although AN fibers with CFs near
the tone frequency saturate, the edges of the activity
pattern provide a constant amount of information as
level increases.

Possible modifications of Siebert’s model to explain the

‘‘near miss’’. If the distribution of CFs is changed from
uniform-in-log-frequency to uniform-in-linear-fre-
quency, a ‘‘near miss’’ deviation from Weber’s Law is
predicted with the amount of deviation dependent
upon assumptions about the slopes of the tuning
curves. This deviation is a direct consequence of
having more fibers in the nonsaturated region of CFs
as level increases. Specifically, the increase in the
number of fibers in the nonsaturated region with CFs
above the stimulus frequency is much greater than
the decrease in the number with CFs below the
stimulus frequency. However, the original uniform-in-
log-frequency assumption is much more descriptive
of available physiological data than the uniform-in-
linear-frequency alternative, thus rejecting this possi-
bility for the purposes of the present study. [Note that
the uniform-in-linear-frequency assumption with this
model results in the incorrect prediction that the
masking of high-CF fibers results in a decrease in
performance as level increases when the masking
forces the system to use information on low-frequency
fibers, since the number of fibers in the useful range
(nonsaturated) decreases as level increases.]

If the shape of the tuning curves changes as a
function of CF such that higher-CF fibers have lower
slopes (decreasing Q), then the spread of excitation
would proceed more quickly and place more high-CF
fibers in the useful range at higher levels. A model
with this assumption would also result in a ‘‘near miss’’
prediction. Although the narrowly tuned ‘‘tip’’ por-
tion of tuning curves shows an increasing Q with in-
creasing CF, the tails of the tuning curves at high CFs
(Kiang and Moxon 1974) provide a clear physiological
basis for this assumption. Other examples of the de-
pendence of the tails on CF can also be seen in Kiang
(1980) and Evans (1972). Instead of describing avail-
able tuning curves and the distribution of CFs and
calculating the spread of excitation, one can measure
the spread directly by measuring the distribution of
thresholds for a fixed stimulus waveform for all AN
fibers. A sample of measured thresholds for a 1-kHz
tone from three cats can be seen in Figure 4 in Kiang
and Moxon (1974). The slope of the mean threshold
as a function of CF decreases with increasing CF when
plotted on the log-frequency axis, consistent with the
increasing number of useful fibers as the level in-
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creases (if the distribution of CFs is approximately
uniform on a log-frequency scale and if the distri-
bution of thresholds at a fixed CF is independent of
CF). There are not sufficient data to characterize this
factor with quantitative precision; it is clear, however,
that this effect would contribute to a deviation from
Weber’s Law in the observed direction, i.e., an
improvement in performance with increasing level.

The third factor is the shape of the rate-level
functions for fibers with CFs above and below the
stimulus frequency (Sachs and Abbas 1974; Cooper
and Yates 1994). The slope of the rate-level function
for a given fiber decreases as the stimulus frequency
increases above CF. As frequency decreases below CF,
the slope either increases or remains roughly con-
stant. This result indicates that many high-CF fibers
will have steeper rate-level functions than fibers with
CFs near the stimulus frequency. This would also
predict an improvement in discrimination perform-
ance at higher levels (other things being equal) rel-
ative to Siebert’s prediction of Weber’s Law. If the
slope increases by a factor of 3, the predicted d¢ for a
single fiber increases by a factor between

ffiffiffi
3

p
and 3,

depending on the spontaneous rate. Note that such a
slope change is consistent with the nonlinear growth
of the output of the high-frequency channels in
Zwicker’s (1956) model that leads to a predicted
improvement in performance at high levels. Fur-
thermore, the fibers with CF below the stimulus fre-
quency are less useful than the fibers with higher CFs.
If it were possible to eliminate the higher-CF fibers,
performance (i.e., sensitivity per decibel) would be
expected to decrease as level increased as a conse-
quence of this effect.

To summarize the conclusions from Siebert’s
model (optimum processing of stationary Poisson

patterns), deviations from Weber’s Law that are
comparable to psychophysical data (a near miss)
could be predicted for tones by modifying the model
to incorporate the tails of tuning curves for high-CF
fibers and/or changes in slope of the rate-level
function with tone frequency relative to CF. It is im-
portant to consider how well the data being predicted
constrain the models being investigated. For exam-
ple, as discussed above, many modifications of Sie-
bert’s basic model can produce a ‘‘near miss’’ to
Weber’s Law based on spread of excitation (also see
Lachs et al. 1984; Delgutte 1996; Heinz et al.
2001a,b). Thus, the ability to predict the ‘‘near miss’’
rather than Weber’s Law for tones in quiet is not a
critical issue for evaluating level encoding in the AN.
A much stronger constraint is the ability to explain
the observation that level-discrimination perform-
ance is still robust in the presence of off-frequency
masking noise (e.g., Moore and Raab 1974, 1975;
Viemeister 1983). The simplest (and most common)
interpretation of this result is that spread of excita-
tion is not necessary for robust level encoding. This
interpretation is based on the assumption that the
only influence of the off-frequency masker is pre-
vention of any spread of excitation to CFs away from
the tone frequency. If this is true, it becomes critical
to account for Weber’s Law only on the basis of in-
formation in AN fibers with CFs near the tone fre-
quency. In fact, models that assume Weber’s Law
within single-CF channels produce a near miss to
Weber’s Law for tones in quiet based on spread of
excitation (e.g., Florentine and Buus 1981). The in-
fluence of off-frequency maskers may be more com-
plicated than typically assumed because of nonlinear
interactions between the signal and masker (e.g.,
Rhode et al. 1978); however, a quantitative evaluation

FIG. 3. The postulated distribution of fiber thresholds for a fixed
characteristic frequency CF. Thresholds are plotted in decibels rel-
ative to the minimum threshold for the CF. Distributions are sepa-
rated into categories for each of three classes of spontaneous activity.

FIG. 4. The sensitivity index squared (d¢)2 as a function of level for
a band of 2200 fibers with a common characteristic frequency CF.
The contributions from the subgroups of low-, medium-, and high-
spontaneous fibers are also plotted.
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of these effects requires a more complex AN model
than is considered in the present study (see Heinz
2000; Heinz et al. 2002). Nonetheless, it is informa-
tive to evaluate level encoding in single-CF channels,
and thus the next section continues with the analyti-
cal approach to examine the ability of rate informa-
tion to account for Weber’s Law based on pooling
across AN fibers with similar CFs.

The ability of single-CF counting models to
explain Weber’s Law

In this section, level discrimination performance (as
characterized by d¢ vs. L) is obtained from a popula-
tion of AN fibers with a common CF (equal to the
stimulus frequency). The results depend upon the
postulated combination rule as well as the set of as-
sumptions about the discharge patterns. This section
focuses on encoding in terms of discharge rate for
illustrative purposes, while contributions of temporal
information are evaluated below.

Optimum processing. First consider optimum
processing of time-invariant Poisson processes (i.e.,
optimally weighted Poisson counting variables) with
rate-level functions given by Eq. (17) as plotted in
Figure 1. Since d¢ for Lthr = 0 has been calculated for
this case (as plotted in Fig. 2), overall performance
can be calculated by combining across individual AN
fibers according to Eq. (15). The distribution of
threshold values, n(L), must be specified along with
the values for spontaneous discharge rate. To specify
the thresholds, the observation that the rate thresh-
olds of fibers at their CFs are (negatively) correlated
with the spontaneous rates of discharge (SRs) is in-
corporated (Liberman 1978). Three distributions of
thresholds are chosen, one for each of the SR cate-
gories (low SR = 0.5 sp/s, medium SR = 10 sp/s, and
high SR = 50 sp/s). The threshold distributions
shown in Figure 3 are based on the data of Liberman
(1978). With these assumptions, the optimum sensi-
tivity per decibel is given by

ðd0opÞ
2 ¼ ðd0LÞ

2 � nLðLÞ
h i

þ ðd0MÞ
2 � nMðLÞ

h i
þ ðd0HÞ

2 � nHðLÞ
h i ð24Þ

where d¢L, d¢M, and d¢H are the sensitivities per decibel
for Lthr = 0 described by the functions in Figure 2 for
the low, medium, and high SR cases, respectively;
nL(L), nM(L), and nH(L) represent the threshold
distributions shown in Figure 3; and * represents
convolution. The result of this calculation for (d¢op)2,
is shown in Figure 4 for a band that is assumed to
contain 2200 fibers, corresponding roughly to the
number of fibers in a single 1/3-octave band of CFs
when frequencies are uniformly distributed on a

logarithmic scale (1350 high-SR, 500 medium-SR, and
350 low-SR fibers).It is apparent in Figure 4 that op-
timum use of the counts on all fibers in a common CF
band does not predict a level dependence corre-
sponding to Weber’s Law or the near miss to Weber’s
Law. Rather it predicts a significant decrease in per-
formance as level increases above about 15 dB.
However, predictions for reference levels near 15 dB
using 2200 fibers are better than observed perform-
ance (e.g., d¢op + 4.5, whereas d¢observed + 1 since the
JND + 1 dB). The inability of single-CF Poisson rate
information to account for Weber’s Law is consistent
with similar studies that have used more accurate rate-
level shapes (i.e., that vary with spontaneous rate and
threshold) and discharge-count variance based on
AN data from cat (e.g., Delgutte 1987; Viemeister
1988; Winslow and Sachs 1988). In contrast, Winter
and Palmer (1991) predicted robust level-discrimi-
nation performance over at least 110 dB based on
single-CF AN rate-level responses in guinea pig. Ro-
bust level encoding at high levels in their model re-
sulted from the contribution of high-threshold, low-
SR fibers with nonsaturating (‘‘straight’’) rate-level
functions. However, ‘‘straight’’ rate-level functions
were not observed in the guinea pig data for CFs
below 1.5 kHz (Winter and Palmer 1991) and have
not been observed in data from cat at any CF (e.g.,
Sachs and Abbas 1974; Delgutte 1987; Winslow and
Sachs 1988). Thus, optimal processing of rate infor-
mation within a single-CF-band does not generally
predict Weber’s law. This conclusion implies that this
type of rate-based single-CF model alone cannot de-
scribe the action of a single (critical-band) channel in
models of the type suggested by Zwicker (1956) and
Maiwald (1967a,b,c) since performance [e.g., d¢(L)]
is postulated to be independent of L for a single
channel stimulated at its CF. However, the wide dy-
namic range over which enough single-CF rate in-
formation is available to account for human
performance suggests that combination rules other
than the optimal rule should be examined.

Other (nonoptimal) combination rules. Throughout
the level range for which predicted performance is
superior to observed performance (from less than 0
dB to greater than 70 dB in Fig. 4), there is generally
sufficient information available in this single band of
fibers to allow performance equal to observed per-
formance if appropriate nonoptimum processing is
assumed. This means in essence that many nonopti-
mum models could describe the observed results in
this range. Most of these nonoptimum models may be
contrived and ad hoc, but some may be simple and
appealing.

In the discussion of combination rules above, total-
count and single-fibers-at-a-time rules were consid-
ered in addition to the optimum rule. The total count
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statistic can give performance only equal to or poorer
than optimum. Since saturated fibers contribute
maximum variance and a negligible change in the
mean to the total count, total-count performance will
be significantly worse than optimum at high levels.
Since this degradation will be relatively less important
at lower levels, the total-count statistic will give a de-
scription of level discrimination that is even worse
(more rapid decrease in performance with level) than
the optimum use of Poisson counts. Further, as seen
in Figure 2, a single-fiber-at-a-time rule does not
provide adequate sensitivity; however, a similar rule
applied to groups of fibers (i.e., using a different set
of fibers at each level, e.g., Winslow et al. 1987) could
be constructed to give Weber’s Law performance over
a range of at least 80 dB. Similarly, Delgutte (1987)
has shown that a combination rule in which low-SR,
high-threshold fibers were processed more efficiently
than high-SR, low-threshold fibers could extend the
dynamic range over which Weber’s Law was pre-
dicted; however, performance still degraded signifi-
cantly above 80 dB SPL.

The considerations for cases in which only fibers
within a single CF band are available can be summa-
rized as follows: Performance based on rate infor-
mation would ultimately degrade at high levels, and
therefore the full range of CFs must be included to
understand level discrimination of tones at the
highest levels. When all fibers within a given CF band
are included, and when all uncertainties are consid-
ered, it is not possible to exclude the possibility of
performance consistent with Weber’s Law over a wide
range of levels using only the rate information in a
single-CF band. However, a parsimonious and general
model for predicting robust level encoding based on
the processing of average-rate information does not
exist at this time. Thus, it is of interest to extend the
analytical approach used in the present study to the
quantification of other sources of level information
contained in single-CF AN responses, specifically
temporal information.

RESULTS: LEVEL DISCRIMINATION BASED ON
TEMPORAL INFORMATION

The ability of synchrony information to explain
Weber’s Law

The time-varying Poisson single-channel case [Eq.
(10)] is considered here, assuming that the time-
varying rate-level function is given by Eq. (9) with Q
independent of level (i.e., level-dependent synchrony
is included, but not level-dependent phase). Since
the characteristics of the first term in Eq. (10) (i.e.,
rate information) have been described above, atten-
tion is focused on the second, synchrony term.

To evaluate the effect of the second term in Eq.
(10), specific assumptions about the function g(L)
are made. The maximum value of g(L) depends on
frequency; in cat, the largest values are about 5 and
occur for low frequencies (as do the largest slopes of g
vs. L) (Johnson 1980). The maximum value of g(L)
decreases steadily above about 1–3 kHz (Johnson
1980; Weiss and Rose 1988; Koppl 1997). As a con-
venient approximation to available data (Evans 1980;
Johnson 1980), it is assumed in the following that
g(L) increases linearly over a range of 20 dB as shown
in Figure 5A for a low-frequency fiber. Also, since the
discharge patterns on AN fibers often show phase-
locking to the stimulus at levels below the level at
which the average rate of discharges starts to increase
(Johnson 1980), a hypothetical fiber is considered for
which g(L) increases to its maximum value before the
rate increases above the spontaneous rate. [In actu-
ality, the dynamic range for synchronization partly
overlaps that of average rate, but the conclusions
drawn here are not affected by this simplification.]
For easy comparison to the average-rate-alone results
in Figure 2, the duration is again taken to be T = 0.1
s. For dg(L)/dL = 1/4, (d¢)2 reduces to (5/8) SR d2[ln
I0 (g)]/dg2, where SR is the spontaneous rate. This
function is plotted in Figure 5B for two values of SR
(SR = 50 sp/s and SR = 10 sp/s). Note that in con-
trast to rate information, which decreases as SR in-
creases, synchrony information increases with SR
because of the increased number of discharges that
encode temporal information.

This example shows that synchrony can provide
much information for level discrimination at low
frequencies. Since the synchrony threshold is clearly
below the rate threshold, this source of information
could extend the range of levels over which a single
fiber could provide robust performance. If synchrony
information is included, the (d¢)2 for synchrony in
Figure 5B is essentially added to each fiber’s (d¢m)2

from the rate-alone analysis in accordance with Eq.
(10) above. For the single-CF population model
considered above (see Fig. 4), this information could
add 10–15 dB to the range of levels over which (d¢op)2

above observed performance but does not change the
fact that predicted performance deteriorates rapidly
at high levels.

The ability of nonlinear-phase information to
explain Weber’s Law

An additional source of information in the phase-
locked discharges of low-frequency AN fibers is the
nonlinear phase (Anderson et al. 1971), which in-
troduces the third term on the right side of Eq.
(10). As mentioned above, the usefulness of this
cue is dependent upon either the availability of an
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absolute phase reference, which is unlikely, or the
use of relative times of the discharges of fibers with
different CFs (Carney 1994). The Poisson model
with nonlinear phase cues can be studied using the
expression for the time-varying rate given in Eq.
(9), which includes level-dependent rate and syn-
chrony in addition to level-dependent phase. The
average-rate-level function used in this section is
described in Eq. (17) (Fig. 1) and the level-de-
pendent synchrony was described in the last section
(Fig. 5A).

The level-dependent phase is described by a
simple function that captures the key features de-
scribed by Anderson et al. (1971) for AN responses,
Ruggero et al. (1997) for basilar membrane re-
sponses, and Cheatham and Dallos (1998) for inner
hair cells. The phase of a fiber’s response to tones
has increasing lag as a function of level in response
to stimulus frequencies below CF, has no change
with level at CF, and has decreasing lag with level in
response to frequencies above CF. Figure 6 shows
the dependence of phase on frequency for a single
model fiber’s responses at several levels; the plotted
phases are referenced to phase at 90 dB SPL [using
Anderson et al.’s (1971) convention]. The model
phase varies linearly between 30 and 90 dB SPL.
This is a conservative range of levels over which the
nonlinear-phase cue might convey information for
level discrimination; Ruggero et al. (1997) showed
that in the most sensitive experimental prepara-
tions, the compressive nonlinearity has a threshold
of about 20 dB SPL and extends to levels of 100 dB
or higher. The maximum difference in phase

between the nonlinear-phase threshold (30 dB SPL)
and 90 dB SPL is specified as p/2, and that maxi-
mum is reached at frequencies 1/2-octave above
and below CF.

This AN model has a highly simplified represen-
tation of the nonlinear phase, which facilitates the
calculations here. A more accurate representation
would vary the amount and frequency range of the
level-dependent phase as a function of CF to incor-
porate the change in the strength of the active
process as a function of CF (see Heinz 2000). Nev-
ertheless, the form chosen here yields phase-level
curves that are comparable to those of Anderson et al.
(1971) for low CFs. As in the treatments of level-
dependent rate and synchrony, the details of the
level-dependent phase are not important to the goal
of illustrating a method for quantifying the infor-
mation in this neural cue.

When quantifying the information for level dis-
crimination that is available in responses that contain
all three level-dependent response properties, the
three terms in Eq. (10) can be plotted separately to
illustrate the relative contributions of each cue. The
upper panels of Figure 7 show rate r(L), synchrony
g(L), and phase Q(L) versus level for a high-SR, 1200-
Hz CF model fiber in response to a 1000-Hz tone.
Siebert’s (1968) tuning curve function,

H ðf =CFÞ ¼
ðf =CFÞ10; f < CF

ðf =CFÞ	20; f � CF

(
ð25Þ

was used to compute the threshold for this off-CF
tone. For illustration, the frequency of the tone was
chosen to be approximately a quarter-octave below
CF, resulting in a half-maximal phase cue (see Fig. 6),
Recall that the nonlinear-phase cue for tones exists
only for fibers responding to frequencies above or
below CF. The lower panels of Figure 7 show (d¢)2 for
each of the three terms in Eq. (10). The rate-level and
sync-level functions are shifted approximately 15 dB
to the right compared with Figures 1 and 5 because
the fiber is responding to a tone at a frequency away
from CF. As before, the changes in rate with SPL
contribute information over a limited level range
between rate threshold and Lsat. The synchrony con-
tributes a relatively large amount of information, but
only at very low levels. In contrast, the nonlinear
phase contributes values of (d¢)2 comparable to those
of the rate term, which are maintained at mid-to-high
SPLs. The nonlinear-phase cue increases from 30 to
55 dB SPL because the rate-level function has still not
saturated at these levels. Above 55 dB SPL, where rate
is saturated, the phase cue remains constant until 90
dB SPL, where the phase becomes level-independent
in the model and no information about level change
is provided.

FIG. 5. A. The synchrony parameter g(L) (dimensionless) as a
function of level (in decibels relative to the rate-defined threshold).
B. The square of the sensitivity index (d¢)2 as a function of level; this
function was calculated assuming optimum use of the synchrony
information alone [i.e., second term in Eq. [10]. Note that 100(d¢)2 is
plotted to allow for direct comparison with Figure 2. Two sponta-
neous rates are illustrated; high SR, solid line; medium SR, dotted
line.
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Relative amounts and CF distributions of rate,
synchrony, and nonlinear-phase information

The definition of the time-varying rate function in
Eq. (9) resulted in the ability to ‘‘parse’’ the level
information into the three terms in Eq. (10). The
overall information for level discrimination contrib-
uted by the three cues can be examined by simply
summing the three terms of (d¢)2 (Fig. 8), which il-
lustrates the differing importance of the rate and
temporal forms of information over different ranges
of sound levels for a single fiber. Of course, the dis-
tribution of information provided by some of these
cues also varies with CF. The CFs that convey infor-
mation in the form of rate and synchrony vary with
level because of spread of excitation, saturation, and
the change in amount of compression as a function
of CF.

Figure 9 illustrates (d¢)2 vs. CF for the three terms
in Eq. (10) and their sum at three sound levels of a
1000-Hz tone. The level that excites each model fiber
is determined by the simple triangular tuning-curve
filter described in Eq. (25). The effects of saturation
for fibers with CF near the stimulus frequency and
the spread of excitation with increasing level are clear
in the ‘‘rate’’ and ‘‘synchrony’’ terms. The ‘‘phase’’
term illustrates that, at moderate-to-high levels, the
fibers tuned near the tone frequency have informa-
tion for level discrimination. The sum of the three
terms illustrates that the CF range near the tone fre-
quency provides information at all three SPLs, due to
synchrony and rate at low sound levels and to phase at
moderate-to-high sound levels. Thus, at low CFs,
where the average-rate dynamic ranges of both low-

and high-SR fibers are limited, the nonlinear-phase
cues may be especially important for conveying in-
formation related to changes in level.

GENERAL DISCUSSION

This study explored several issues related to the en-
coding of level in AN discharge patterns. Analytical
models of AN tone responses and signal detection
theory were used to quantify optimal performance
limits based on the stochastic responses of the AN.
Simple analytical AN models provided insight into
the relative importance of different sources (rate and
temporal) of neural information for level encoding.
Specifically, simple equations were derived for the
relative contributions of average-rate, synchrony, and
phase cues. The inclusion of temporal information in
analytical AN models extends previous modeling
studies of level encoding, which have been primarily
limited to average-rate information (e.g., Siebert
1965, 1968; Delgutte 1987; Winslow and Sachs 1988;
Viemeister 1988; Winter and Palmer 1991).

The ability of individual AN fibers to robustly en-
code level changes based on average rate depends on
the shape of the rate-level function and on the nature
of the discharge randomness. It was shown that the
rate information provided by individual AN fibers is
maximal at stimulus levels within 5–10 dB above fiber
threshold and that information begins to degrade at
levels well below those for which rate saturation limits
performance. This degradation is primarily due to
the variance of AN discharge counts increasing sig-
nificantly with increases in rate, while AN rate-level
curves do not increase faster than linearly (versus
decibels) over wide level ranges. Thus, individual AN
fibers are even more limited in their ability to robustly
encode changes in stimulus level based on rate than
saturation would suggest.

Since there is considerably more than enough in-
formation in the AN population response to allow
observed performance in level discrimination in quiet
over a wide range of levels, the interesting question
becomes how to understand the parametric depend-
encies and the effects of off-frequency maskers. It is
typically assumed that good performance in the
presence of off-frequency maskers implies that
Weber’s Law must be produced by AN fibers within a
narrow CF band. However, consistent with previous
studies, it was shown here that optimal processing of
average-rate information does not account for We-
ber’s Law based on fibers with a limited CF range
because performance degrades significantly above
about 40 dB SPL.

While the predicted trends in optimal perform-
ance were inconsistent with behavioral performance,

FIG. 6. These plots show the simplified nonlinear-phase depend-
ence that was introduced into the analytical AN model, based on the
AN recording of Anderson et al. (1971). Phase was referenced to the
phase in response to 90 dB SPL at each frequency and plotted versus
frequency. The phase is shown for 10 dB increments in level, from
30 dB SPL (largest phase differences with respect to the phase at 90
dB SPL) to 90 dB SPL (flat line, since this is the reference). The
maximum phase change with SPL was limited to p/2; the maximum
phase changes occurred at a half-octave above and below CF. At
each frequency, phase was varied linearly with level between 30 and
90 dB SPL.
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it is not possible to rule out rate-based models be-
cause there is enough total rate information to ac-
count for robust level-discrimination performance
over a wide range of levels (for general discussions of
the use of optimal performance limits to evaluate
neural encoding, see Siebert 1968, 1970; Colburn
1973; Delgutte 1996; Heinz et al. 2001a). Optimal
performance limits superior to behavioral perform-
ance suggest the need for a suboptimal combination
scheme (as discussed below). However, the strong
degradation in rate information as level increases
above medium levels suggests that parsimonious
suboptimal combination schemes based on rate in-
formation may not exist and that other sources of
neural information may be needed to account for
robust level encoding in the AN.

The analytical AN model used in the present study
allowed for the quantitative comparison of the relative
contributions of rate and of temporal information.
The level dependence of synchrony provides infor-
mation that extends the dynamic range for robust level
encoding at low frequencies, but only at low levels.
Thus, synchrony information per se does not help ac-
count for robust level encoding at high levels based on
fibers within a narrow range of CFs. In contrast, it was
shown that nonlinear-phase cues provide robust level
information within a narrow CF range over a wide
range of levels, including high levels.

The third term of Eq. (10) illustrates the depend-
ence of nonlinear-phase information on basic AN
response properties. It was shown that phase infor-
mation depends not only on the rate of change in
phase with level, but also on average discharge rate
and strength of synchrony. This makes sense intui-

tively, as changes in phase are easier to decode when
many spikes are observed and when these spikes are
strongly phase locked to the stimulus. This depend-
ence implies that nonlinear-phase information at low
frequencies is robust up to high levels in all fibers
because average rate and synchrony are essentially
constant at levels more than �30 dB above fiber
threshold, and the rate of change of the phase is es-
sentially constant with level (Anderson et al. 1971;
Ruggero et al. 1997).

The relation between nonlinear-phase responses
and nonlinear tuning implies that nonlinear-phase

FIG. 7. Top row shows rate-level function, sync-level function, and phase-level function, respectively, for a high-SR, 1200-Hz CF fiber in
response to a 1000-Hz tone (which is near the point of half-maximal phase change; see Fig. 6). Bottom row shows (d¢)2 vs. level based on each of
the three AN response properties.

FIG. 8. Sum of the three (d¢)2 terms in Figure 7 as a function of
level. Note that robust information is contained in a single high-SR
AN fiber over a wide dynamic range when the nonlinear-phase cues
are considered.
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cues exist over the entire range of levels for which the
cochlear amplifier produces compressive BM re-
sponses (i.e., at least up to �90 dB SPL; Ruggero et al.
1997). The predicted optimal performance limits do
not depend on (or suggest) a specific mechanism for
decoding the nonlinear-phase cues. However, these
phase cues can be decoded by any mechanism that
compares the relative phase response across fibers
with different CFs (discussed further below) because
the level dependence of phase differs across fre-
quency relative to CF (Anderson et al. 1971; also see
Fig. 6). Thus, nonlinear-phase responses appear to
provide a realistic source of robust level information
near CF and may provide an alternative explanation
at low frequencies to the level-dependent processing
schemes that are necessary to account for Weber’s
Law based on average rate.

The present study provides constraints for two
possible explanations, one based on average rate and
one based on nonlinear phase, for robust level en-
coding at high stimulus levels based on AN fibers
within a narrow range of CFs. As discussed in the
following paragraphs, a specific neural mechanism
has been proposed for each explanation of how AN

information could be decoded in the cochlear nu-
cleus to produce robust level encoding. Further sup-
port for or against each explanation can be garnered
by considering whether there are cell types in the
cochlear nucleus that could perform the proposed
neural processing.

Winslow et al. (1987) have proposed a ‘‘selective
listening’’ mechanism in which average-rate informa-
tion from high-SR, low-threshold fibers is used at low
levels, while that from low-SR, high-threshold fibers is
used at high levels. Lai et al. (1994) have demonstrated
that such a selective-listening strategy can be per-
formed by a simple model of a cochlear nucleus stellate
neuron based on shunting inhibition. However, the
required anatomical innervation patterns of the dif-
ferent SR fibers to stellate neurons and quantitative
psychophysical predictions have not been demon-
strated for this mechanism. Furthermore, it is not clear
that a model that relies solely on low-SR fibers at high
levels would produce Weber’s Law because the infor-
mation provided by low-SR fibers also begins to de-
grade within 10 dB above their threshold (see Fig. 2).

Carney (1994) suggested that a monaural, across-
frequency coincidence detection mechanism could

FIG. 9. Sensitivity index squared (d¢)2 vs. CF in response to a 1000-
Hz tone at three levels (dB re threshold at CF) for high-SR fibers.
Stimulus levels (10, 40, 70 dB SPL) are indicated at the right of each
row. The (d¢)2 based on Rate only, Sync only, and Phase only are
shown (first three columns), as well as the sum of the three terms

(right column). It is clear that each cue potentially contributes
information for discrimination at different stimulus levels and over
different CF ranges. For example, the phase cues provide information
in the region near CF at mid to high levels where rate and synchrony
provide little or no information due to saturation.
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be used to decode the level information provided by
nonlinear-phase cues. There is physiological evidence
that some cell types in the cochlear nucleus (e.g.,
globular bushy cells) have responses that are con-
sistent with a coincidence-detection mechanism (e.g.,
Carney 1990; Joris et al. 1994a,b). Heinz et al.
(2001b) have quantitatively evaluated the ability of a
simple across-frequency coincidence-counting mech-
anism to account for robust level encoding based on
the information in AN responses. They showed that a
near-CF population of coincidence counters could
reliably decode the robust nonlinear-phase cues
provided at low frequencies. In addition, the coinci-
dence-detector population also produced Weber’s
Law at high frequencies based on the more robust
average-rate cues associated with stronger compres-
sion at high frequencies. Carney et al. (2002) have
also demonstrated the ability of a monaural, across-
frequency, coincidence-detection mechanism to ac-
count for detection of tones in noise. Future physio-
logical studies are needed to test specific single-unit-
response predictions for the coincidence-detection
mechanism, as well as the selective-listening mecha-
nism, in order to provide further support for the
types of AN information that are important for robust
level encoding.

As noted above, available data indicate that AN
phase locking to the cycles of a tone decreases at
frequencies higher than approximately 1–3 kHz
(Johnson 1980; Weiss and Rose 1988; Koppl 1997);
however, this rolloff in synchrony was not included in
the simple analytical model. If it is assumed that
synchrony information in the human AN is similarly
reduced at high frequencies, then the information
conveyed by synchrony and level-dependent phase
cues for encoding the level of a tone is significantly
reduced at high frequencies. At high frequencies, the
contributions of rate cues from high-threshold, low-
SR fibers with wider dynamic ranges are potentially
more important (Winter and Palmer 1991; Heinz
2000; Heinz et al. 2001b). The low-SR fibers depend
upon large amounts of compression for their wide
dynamic ranges and the amount of compression in-
creases as a function of CF (e.g., Cooper and Yates
1994). These facts are consistent with the observation
that fibers with non-saturating (‘‘straight’’) rate-level
functions are not observed at CFs below about 1500
Hz (Winter and Palmer 1991) in guinea pig.

If robust level encoding were dependent on phase
cues at low frequencies and on rate cues at high fre-
quencies, then a variation in level-discrimination
performance across frequency could be expected.
However, Heinz et al. (2001b) have shown that linear
spread of excitation plays a strong role for level dis-
crimination in quiet, which suggests that this fre-
quency effect would be subtle. In fact, a subtle

frequency dependency has been observed in level-
discrimination performance (Jesteadt et al. 1977;
Florentine et al. 1987). While the near miss to Weber’s
Law occurs for low frequencies, a small but significant
nonmonotonicity in performance as a function of
level occurs at high frequencies. This ‘‘midlevel
bump,’’ which begins to appear between 1 and 4 kHz,
can be accounted for by the strong BM compression at
high frequencies that starts around 30 dB SPL (Heinz
et al. 2001b). Finally, it should also be mentioned that
the present analysis does not address the time varia-
tion in the rate that occurs after the onset of a stimulus
(Smith and Brachman 1979); the level dependence of
this adaptation (i.e., a wider dynamic range at onset)
could also provide level information (cf. Evans 1980)
and is not limited to low frequencies.

The significance of potential variations across
species is another issue that requires future work. For
example, ‘‘straight’’ rate-level curves have been ob-
served in guinea pig AN responses for high CFs
(Winter et al. 1990) but not for low CFs (Winter and
Palmer 1991), whereas ‘‘straight’’ rate-level functions
have not been observed for any CFs in cat (e.g., Sachs
and Abbas 1974; Delgutte 1987; Winslow and Sachs
1988). This result suggests that the strength and fre-
quency dependence of compression may differ for
cats and guinea pigs. Heinz et al. (2001b) have
demonstrated that the strength of compression has a
large effect on the ability of near-CF rate information
to account for Weber’s Law. Thus, an important re-
maining issue is the strength of compression in hu-
mans relative to species for which physiological BM
and AN data are available. Psychophysical methods
have recently been developed that estimate BM
compression based on forward-masking studies (e.g.,
Oxenham and Plack 1997; Nelson et al. 2001). These
methods have been shown to produce estimates of
human compression that are consistent with the
amount of BM compression that has been measured
at high frequencies. However, these methods rely on
assumptions for which the physiological evidence at
low frequencies is not definitive, e.g., that below-CF
responses are linear. These methods show promise
for estimating the strength of cochlear nonlinearity
in humans, but their ability to accurately estimate
compression strength as a function of frequency re-
mains to be shown.

In summary, it is likely that level discrimination is
mediated by a multiplicity of attributes of the physi-
ological data and that the relative usefulness of these
attributes is dependent upon the stimulus circum-
stances, such as masked or unmasked, wideband or
narrowband, short or long duration, and fast or slow
stimulus onsets and offsets. The present study pro-
vides a quantitative framework to analyze and com-
pare different types of information available in AN
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responses for encoding level. Future studies with
more complex AN models can extend the results in
the present study by using this quantitative approach.
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