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In this letter, we aim to measure the relative contribution of coincidence
detection and temporal integration to the firing of spikes of a simple
neuron model. To this end, we develop a method to infer the degree of
synchrony in an ensemble of neurons whose firing drives a single postsy-
naptic cell. This is accomplished by studying the effects of synchronous
inputs on the membrane potential slope of the neuron and estimating the
degree of response-relevant input synchrony, which determines the neu-
ron’s operational mode. The measure is calculated using the normalized
slope of the membrane potential prior to the spikes fired by a neuron,
and we demonstrate that it is able to distinguish between the two opera-
tional modes. By applying this measure to the membrane potential time
course of a leaky integrate-and-fire neuron with the partial somatic reset
mechanism, which has been shown to be the most likely candidate to
reflect the mechanism used in the brain for reproducing the highly irreg-
ular firing at high rates, we show that the partial reset model operates
as a temporal integrator of incoming excitatory postsynaptic potentials
and that coincidence detection is not necessary for producing such high
irregular firing.

Neural Computation 24, 2318–2345 (2012) c© 2012 Massachusetts Institute of Technology



Distinguishing the Causes of Firing 2319

1 Introduction

The firing patterns of neurons are traditionally considered to be random
(Perkel, Gerstein, & Moore, 1967a, 1967b; Stein, 1967; Softky & Koch, 1992,
1993; Shadlen & Newsome, 1994, 1995, 1998; Stein, Gossen, & Jones, 2005;
Kostal, Lánský, & Rospars, 2007), an assumption suggesting that the rel-
ative timing of individual spikes is of no consequence. However, some,
studies show that the activity of neurons is often correlated and synchro-
nized (Usrey & Reid, 1999; Salinas & Sejnowski, 2001; Buzsáki & Draguhn,
2004), and a growing number of recent publications have focused on ways
to detect and measure correlations and synchronous events in neural spik-
ing (Faes et al., 2008; Schrader, Grün, Diesmann, & Gerstein, 2008; Stark
& Abeles, 2009; Staude, Rotter, & Grün, 2010; Grün, Diesmann, & Aertsen,
2010; Kreuz, Chicharro, Greschner, & Andrzejak, 2011). The role and signif-
icance of correlated activity and synchrony has been a matter of theoretical
study for several decades (von der Malsburg, 1981; Abeles, 1982; Crick &
Koch, 1990; König, Engel, & Singer, 1996; Singer, 1999).

An important aspect of synchronous activity in a neural ensemble, one
that is often overlooked, is the effect it can have on the behavior of a sin-
gle, common postsynaptic neuron. The degree of presynaptic synchrony
has been linked to the continuum between the two operational modes
considered to be employed by cortical neurons, temporal integration and
coincidence detection (König et al., 1996; Aertsen, Diesmann, & Gewaltig,
1996; Kisley & Gerstein, 1999; Rudolph & Destexhe, 2003). More specifi-
cally, Aertsen et al. (1996) showed that higher synchronization at the input
leads to shorter response latency and a higher probability of response (i.e.,
response reliability), two of the main characteristics of coincidence detec-
tion. This was later reinforced by Rudolph and Destexhe (2003), who used
a conductance-based compartmental neuron model and showed that the
neuron is able to operate as a temporal integrator or a coincidence detector,
depending on the degree of input synchrony. These authors also empha-
sized that the two operational modes lie at the two extremes of a continuum,
with no discrete boundary between the two modes. Additionally, coinci-
dence detection has been proposed as a candidate mechanism for the highly
irregular, high-rate firing observed in cortical cells. In particular, Softky and
Koch (1992, 1993), in an attempt to reproduce such experimental recordings
from cortical cells in the primary visual (V1) and middle temporal visual
(MT) areas, concluded that temporal integration was an unlikely mecha-
nism for cortical neurons exhibiting this behavior, as integrators have very
regular firing patterns at such high rates. They suggested that coincidence
detection is a more likely operational mode. Bugmann, Christodoulou, and
Taylor (1997) and Christodoulou and Bugmann (2001) demonstrated that
incomplete postspike repolarization of the membrane was the most likely
candidate for producing highly irregular firing at high rates, with inde-
pendent exponentially distributed intervals. However, they were unable to
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provide a conclusive answer as to whether the model operates predomi-
nantly as a coincidence detector or temporal integrator, when exhibiting
highly irregular, high rate firing behavior.

Discovering if cortical neurons are driven by synchronous volleys of
spikes and, if so, measuring the degree of synchrony, would provide an
important step toward a solution to the problem of understanding the
neural code. If the firing of the presynaptic ensemble of a neuron is highly
synchronized, the postsynaptic neuron operates as a coincidence detector.
This implies a high temporal precision for the neural code, which in turn
implies that a temporal code, rather than a rate code, is most likely being
employed. Therefore, a potential method of measuring the degree of firing-
relevant synchrony at the input of a neuron would be a valuable tool for
solving the problem of the neural code.

While multineuron recordings are becoming increasingly easier and
more common to perform (Schrader et al., 2008; Staude et al., 2010; Berger,
Borgelt, Louis, Morrison, & Grün, 2010), identifying the thousands of neu-
rons that act as inputs to a single cell and recording their activity is not
a trivial task. It is therefore preferable and simpler to develop a method
of inferring the degree of synchrony between the inputs of a neuron by
observing the fluctuations of the neuron’s membrane potential. Kisley and
Gerstein (1999), for example, demonstrated that the slope of the membrane
potential directly preceding a spike is indicative of the level of synchrony in
a neuron’s presynaptic ensemble. Additionally, DeWeese and Zador (2006)
studied intracellular recordings of cells in the auditory cortex of the rat and
discovered that rapid fluctuations in the membrane potential most likely
indicate brief, synchronous volleys of spikes. Very recently, Kobayashi,
Shinomoto, and Lánský (2011) studied the membrane potential fluctua-
tions of a simple neuron model in order to infer the presynaptic input rates.
Goedeke and Diesmann (2008) showed that the response of a simple neuron
model to synchronized inputs is dependent on the membrane potential and
its derivative. They emphasized that in addition to the membrane potential,
the derivative should also be considered when studying neural synchro-
nization in feedforward networks.

These studies show that the firing properties of the presynaptic ensemble,
especially properties relating to synchrony, are reflected in the time course of
the intracellular membrane potential of the postsynaptic neuron. It should
therefore be possible to establish an invertible relationship between the
input and the membrane potential in order to infer the presynaptic firing
properties from the membrane potential data.

Presynaptic synchrony has also been known to affect the postsynaptic
neuron’s firing patterns. In particular, it has been shown that correlated in-
puts affect the firing rate (Kuhn, Rotter, & Aertsen, 2002) as well as the firing
irregularity (Salinas & Sejnowski, 2002) of the postsynaptic neuron. While
these effects can be seen in the firing interspike interval (ISI) distribution,
the same properties (rate and irregularity) are also affected by the rest of the
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input features. Furthermore, the effects of higher correlations on the firing
statistics differ depending on other properties of the neuron or its inputs. It
is unlikely that any inferences can be made regarding the input synchrony
from observations of the neuron’s firing statistics alone. The trajectory of
the membrane potential of the postsynaptic neuron provides much more
information regarding the activity of the presynaptic population.

In order to determine where the operational mode of a given neuron lies
on the continuum between temporal integration and coincidence detection,
we studied the correlation between the slope of the membrane potential,
within a short period of time prior to firing, with the degree of presynaptic
synchrony. In this regard, it is analogous to the spike-triggered average
stimulus (also known as the reverse correlation between the spike train
and stimulus; Mainen & Sejnowski, 1995; Bugmann et al., 1997). As such,
analytical treatments of the spike-triggered average could be adapted to
study and calculate the expected shape of the prespike membrane potential,
in place of the stimulus (Kanev, Wenning, & Obermayer, 2004).

In the rest of this letter, we initially describe the models used, their
parameters, and how our measure is calculated. We then describe how
our simulations were set up and run in order to establish the reliability of
our measure and, subsequently, measure the operational mode of a neuron
firing highly irregular spike trains at high rates. We continue with presen-
ting of our results and conclude with a detailed discussion including a
comparison of our study and results with related work.

2 Methodology

2.1 Models. In this study we used the leaky integrate-and-fire (LIF)
neuron model, also known as the Lapicque model (Lapicque, 1907; Tuck-
well, 1988), as well as a variant of the LIF model that uses a partial reset
mechanism (LIFwPR) (Bugmann et al., 1997).

2.1.1 Leaky Integrate-and-Fire (LIF) Neuron Model. The LIF model de-
scribes the time course of the membrane potential for subthreshold voltages,

dV
dt

= −(V(t) − Vrest ) + RI(t)
τm

, (2.1)

where V(t) is the membrane potential at time t, Vrest is the resting potential
(i.e., the membrane potential at the initial time t0 such that V(t0) = Vrest).
Furthermore, R is the resistance of the membrane, and τm is the membrane
leak time constant. I(t) is the time-dependent input, which is modeled as a
time-varying function or a random spike generator process (e.g., a Poisson
generator; Stein, 1965).
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Table 1: Parameter Values for the Models Used in This Study.

Parameter LIF Value or Range LIFwPR Value or Range

Vth 15 mV 15 mV
Vrest 0 mV 0 mV
Vreset 0 mV 13.65 mV
R 10 k� 10 k�

τm 10 ms 10 ms
tr 2 ms 2 ms
�Vs 0.1–2.0 mV 0.16 mV
Nin 30–200 50
fin 20–700 Hz 150–300 Hz
Sin 0–1 0–1
σin 0–4 ms 0–4 ms

Notes: Many of the parameters share a common value; we list them
explicitly for completeness. The ranges of the input rates were chosen
accordingly to study the entire obtainable firing frequency range.

The firing mechanism of the model is triggered explicitly when the mem-
brane potential reaches a fixed threshold Vth, after which the membrane
potential is reset back to Vrest. A refractory period is modeled by disabling
the firing mechanism for a short period, tr, after a spike is fired. The values
of the model parameters used for the simulations in this letter are listed in
Table 1.

2.1.2 Partial Reset LIF Variant (LIFwPR) Neuron Model. The LIFwPR vari-
ant of the LIF model sets the membrane potential following the firing of
a spike at a level higher than the resting potential: Vreset > Vrest (Lánský
& Smith, 1989; Lánský & Musila, 1991; Bugmann et al., 1997). This mod-
els the incomplete electrical decoupling between the neuron’s soma and
dendrites (Rospars & Lánský, 1993; Lánský & Rodriguez, 1999). Bugmann
et al. (1997) showed that the LIFwPR is equivalent to an LIF with a time-
dependent threshold (Wilbur & Rinzel, 1983; Tuckwell, 1988). The level
of reset is controlled by the reset parameter β, which relates Vreset to the
threshold and resting potential:

Vreset = β
(
Vth − Vrest

) + Vrest . (2.2)

The LIFwPR model was chosen for its ability to produce highly variable
firing at high rates, consistent with experimental recordings (Softky & Koch,
1993), particularly when β = 0.91, as proved by Bugmann et al. (1997),
which results in a reset potential of Vreset = 13.65 mV. When β = 0, the
model becomes a LIF (Vreset = Vrest).
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2.1.3 Description of the Inputs. Synaptic inputs were modeled in all cases
as realizations of a Poisson process (i.e., intervals were exponentially dis-
tributed). The input population was characterized by five parameters, two
of which relate to synchrony. The nonsynchrony parameters are the number
of input spike trains (Nin), the average rate of the inputs ( fin), and the level of
depolarization caused by each spike on the membrane potential (�Vs). The
two parameters that defined the level of synchrony are Sin, which denotes
the proportion of spike trains that are synchronous, and σin, the standard
deviation of a normally distributed random variable that is used to apply
gaussian jitter to each individual spike in the identical spike trains. The
parameter ranges were chosen such that our measure is investigated in the
entire dynamic range of the LIF model. More specifically, spike trains are
generated by performing the following steps:

1. Generate one Poisson spike train, with rate fin for the length of the
simulation T.

2. Copy the generated spike train (SinNin − 1) times, giving a total of
SinNin identical spike trains.

3. For each spike in all spike trains generated so far, shift its time by a
random variate drawn from a normal distribution X ∼ N (0, σ 2

in).
4. Generate (1 − Sin)Nin Poisson spike trains, giving a total of Nin input

spike trains.

The product SinNin is always rounded to the nearest integer. Figure 1
shows three sample input cases. The raster plots show the effect of the
two variables, Sin and σin, on the overall synchrony of the spike trains.
Each input spike causes an instantaneous jump of �Vs in the postsynaptic
neuron’s membrane potential.

The maximum value for σin of 4 ms (see Table 1 for ranges and values for
all parameters) was chosen such that it is high enough to reduce synchrony
significantly, to the point where no synchronous activity beyond what is
expected by random chance remains, even for cases where Sin = 1.

Note that while various input parameter ranges were investigated for the
LIF model, the parameters of the LIFwPR model are constant (see Table 1).
These values were taken from Bugmann et al. (1997), who investigated the
LIFwPR model and determined the parameter values that cause highly
irregular high-rate firing. Therefore, an investigation of the parameters of
the LIFwPR model is outside the scope of our work, as we employ the
specific model solely to investigate its subthreshold membrane potential
trajectories in the highly irregular high-firing-rate regime.

Our study focused exclusively on excitatory inputs. This simplifying
assumption allowed us to define more clearly the effects of synchronous
activity on the membrane potential trajectory in a more predictable fash-
ion. Although we previously demonstrated (Christodoulou, Clarkson, Bug-
mann, & Taylor, 2000) that increasing inhibition leads to greater membrane
potential fluctuations apart from reducing the mean membrane potential,



2324 A. Koutsou, C. Christodoulou, G. Bugmann, and J. Kanev

Figure 1: Three sample input cases showing the effects of the two synchrony
parameters Sin and σin (see text for details) on the overall temporal structure
of the input spike trains. For all three cases, Nin = 50 and T = 1000 ms. (a) A
mostly random set of spike trains, with only 20% of the spike trains being
completely synchronized (Sin = 0.2). (b) A much higher degree of synchrony,
with 80% of the spike trains being identical (Sin = 0.8). (c) The effects of high
jitter (σin = 3 ms) on spike trains with 80% synchrony (Sin = 0.8). Comparing
panels c and b, while it is apparent by the vertical columns of aligned spikes
that there is a high amount of synchrony in both, the existence of gaussian
jitter in panel c makes the overall spike trains noisier and the columns are less
pronounced.

the effects of inhibition on the slope of the membrane potential, in the
presence of synchronous activity, are the subject of ongoing work.

2.2 Methods. The two models, the LIF and LIFwPR variant, were used
to study the relationship between the slope of the membrane potential prior
to the firing of a spike and the amount of synchrony that exists in the in-
put spike trains that caused the firing. Determining a relationship between
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the two will allow us to develop a method that can reliably measure the
response-relevant input synchrony and, by extension, the neuron’s opera-
tional mode.

2.2.1 Prespike Membrane Potential Slope. Since the time course of the mem-
brane potential is discontinuous due to input spikes causing instantaneous
jumps in the membrane potential, we define a temporal window of length
w, which we call the coincidence window. This allows us to calculate the
membrane potential’s average rate of change between ti and ti − w, where
ti is the moment when the ith spike was fired. In other words, we calculate
the slope of the secant line that intersects the membrane potential trace at
the start and end of the window w (see Figure 2a), as shown in

mi = V(ti) − V(ti − w)

w
, (2.3)

where V(t) denotes the membrane potential at time t. Note that V(ti) is the
membrane potential during the firing of a spike and therefore V(ti) = Vth.

2.2.2 Normalization Bounds. In order to associate the prespike slope of
the membrane potential with the level of presynaptic synchrony and the
operational mode continuum, we define the values of the slope mi for
the two limiting cases: completely synchronous (Sin = 1) and completely
random (Sin = 0) inputs. No jitter is assumed in either case (σin = 0 ms). Each
limiting case corresponds to a bound in the operational mode continuum.

For Sin = 0, inputs are completely random, and coincidences between
spikes occur due to random chance alone. The postsynaptic neuron inte-
grates the random inputs and fires spikes in response to an almost constant
arrival of spikes, with very small fluctuations. The membrane potential of
the neuron in this case rises almost steadily from Vrest to Vth during each
interspike interval (ISI). The value of the lower normalization bound is
therefore defined as

Li =
Vth −

(
Vrest + I

(
1 − exp

(
−�ti−w

τm

)))
w

, (2.4)

where �ti is the length of the ISI preceding the ith spike and I is the constant
input required to fire at the end of the ISI, starting from Vrest :

I = Vth − Vreset

1 − exp
(
−�ti

τm

) . (2.5)

The lower bound therefore varies for each spike in a spike train.
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Figure 2: Two example membrane potential traces V(t) for the LIFwPR model.
(a) Prespike windows (w) and related secant lines (dotted lines) are shown. The
first secant line, which corresponds to the first spike (Si), starts at V(ti − w)

and ends at V(ti). The second secant line, which corresponds to the second
spike (Si+1), starts at V(ti+1 − w) and ends at V(ti+1). The dashed horizontal line
denotes the membrane potential firing thresholdVth (15 mV). (b) The two bounds
are shown between each pair of consecutive spikes. The lower bound (low slope)
corresponds to a dotted line starting at the postspike reset potential (in this
case, Vreset = 13.65 mV) and ending at the point where the potential crossed the
threshold (Vth = 15 mV). The upper bound (high slope) corresponds to a dotted
curve that decays from the postspike reset potential for the duration of the ISI.
The two bounds correspond to the theoretical trajectory of the membrane in the
presence of constant input for the lower bound and completely synchronized
inputs, with no background activity, for the upper bound. In principle, input
spikes cause instantaneous jumps, and V(t) should appear discontinuous on
the plots. However, since V(t) was simulated numerically, instantaneous jumps
become one time-step wide and are plotted as continuous lines for simplicity
on both subfigures.

Equation 2.4 assumes a membrane potential generated by a classical LIF.
In the case of the LIFwPR, however, a constant arrival of spikes would cause
the prespike membrane potential slope to be lower, since the potential of
the membrane at the start of each ISI is not Vrest but Vreset (see Figure 2b). We
therefore redefine the lower bound to account for the LIFwPR as

L∗
i =

Vth −
(
Vreset + I

(
1 − exp

(
−�ti−w

τm

)))
w

. (2.6)

For Sin = 1, the neuron receives Nin spikes simultaneously at random
(exponentially distributed) intervals. If Nin�Vs ≥ (Vth − Vrest ), each volley
of spikes causes the neuron to fire. Assuming a classic LIF model, the
membrane potential prior to firing remains at Vrest up to the moment of
firing ti, when it instantaneously jumps to Vth. Since we cannot define the
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slope of the instantaneous jump, we use the same temporal window w as
described for equation 2.3, and the value of the upper normalization bound
is defined as

Ui = Vth − Vrest

w
. (2.7)

In the case of the LIFwPR, equation 2.7 must also account for the higher
potential of the membrane at the start of the ISI. More specifically, to deter-
mine the upper normalization bound, we must calculate the membrane po-
tential at the start of the coincidence window, after it has decayed from Vreset
(see Figure 2b). The underlying assumption is that in the case of complete
synchrony (Sin = 1), no inputs arrive between volleys, and the potential is
affected only by the leak term. The redefined upper normalization bound
is therefore

U∗
i =

Vth −
(
Vrest + (

Vreset − Vrest

)
exp

(
−�ti−w

τm

))
w

. (2.8)

The term (Vrest + (Vreset − Vrest ) exp(−�ti−w

τm
)) defines the membrane poten-

tial after it has decayed from Vreset for a period (�ti − w). In other words,
it is the membrane potential at the start of the coincidence window for the
limiting case of complete synchrony.

When analyzing data generated from a LIF neuron, we find that the
two variations on the lower and upper bounds (see equations 2.6 and 2.8)
behave identically to the standard forms (see equations 2.4 and 2.7), due to
the fact that for the LIF, Vrest = Vreset .

The bounds are used to linearly normalize the prespike membrane po-
tential slope mi for each spike to fall within the range [0–1]:

Mi = mi − Li

Ui − Li
. (2.9)

For the LIFwPR model, the bounds U∗
i and L∗

i are used accordingly.

2.2.3 The Role of the Coincidence Window. The coincidence window w

defines a period in which all input spikes within it are regarded as coinci-
dent (synchronous). Coincidence to arbitrary precision is unlikely although
much more probable when binning data due to a simulation time step. The
length of w defines the precision of coincidences explicitly.

The role of w becomes clear when one considers how it affects the calcu-
lation of the slope in the limiting case of high synchrony. For an LIF neuron,
if the membrane potential at the start of the window is at the resting poten-
tial, V(ti − w) = Vrest , then this means that enough spikes arrived within a
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period w to cause the neuron to fire from rest. The slope, as calculated by
equation 2.3, will not be affected, regardless of whether these input spikes
were completely synchronized. In other words, all spikes responsible for
the firing that arrived between (ti − w) and ti and the resulting slope will
become equal to the upper normalization bound Ui.

More generally, we may consider an arbitrary initial potential, V(ti −
w) = u. The temporal dispersion of the spikes arriving within the coinci-
dence window has no effect on equation 2.3, the result of which would
always be

Vth−u
w

. The value of w is therefore a measure of the assumed tem-
poral precision of the neural code, and its length allows one to change the
temporal resolution of the slope calculation to match the theoretical limits
of a neural temporal code.

For our simulations, we set the parameter w = 2 ms, since it has been
noted that for neurons with membrane time constants within the range of 10
to 20 ms, a temporal code with accuracy between 1 and 3 ms is theoretically
possible (Gerstner, Kempter, van Hemmen, & Wagner, 1996). By setting the
width of the coincidence window to 2 ms, we effectively attempt to measure
the level of synchrony of the input spikes that caused each response, under
the assumption that the temporal precision of coincidence detection is 2 ms.

2.3 Simulation Details. Simulations of the models described in
section 2.1 were implemented using the Runge-Kutta (RK4) approximation
of the derivative with a simulation time step of 0.1 ms (Wilson, 1999). Other
methods could have been used for iteratively solving the differential equa-
tions that describe the models, such as the exact integration method of Rotter
and Diesmann (1999). Each simulation ran for T = 10 s of simulated time.

Simulations were run in configuration sets where �Vs and Nin were kept
constant for all simulations in the set. Additionally, a target firing rate fout
was defined for the configuration set. Each simulation in a set was assigned
a unique combination of Sin and σin values. For each synchrony parame-
ter pair, the input rate fin was calibrated accordingly to obtain the desired
target firing rate fout . The appropriate input rate was determined by itera-
tively increasing or decreasing fin until the desired fout was obtained. This
calibration was necessary because the synchrony parameters affect the neu-
ron’s firing rate and since our measure relies on the firing ISIs, simulations
that share the same firing rate are more comparable. Additionally, one of
the objectives of this work is to study the highly irregular, high-firing-rate
regime using the LIFwPR neuron. It is therefore more appropriate to group
simulations and results based on the neuron’s firing rate to allow us to
separate simulations and results that belong to a low- or high-firing-rate
regime.

The simulations of the LIF neuron aimed at establishing the relationship
between the synchrony parameters and the mean value of Mi for the entire
simulation. The LIFwPR simulations were subsequently used to determine
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the operational mode of the model when firing highly irregular spike trains
at high rates.

3 Results

3.1 Results with the LIF Neuron Model. The six contour plots in
Figure 3 show results of simulations of the LIF neuron for various pa-
rameter combinations (see the figure caption for details). The parameters
were chosen to demonstrate how the measure behaves under various in-
put regimes (described in section 4). The plots show the mean normalized
prespike slope of the membrane potential (M) for all combinations of Sin
and σin within the value ranges specified in Table 1. Each M value represents
the mean M for all spikes fired during T = 10 s of simulated time.

The value of M reaches the maximal value of 1 in the lower-right-hand
corner, which corresponds to completely synchronized input spike trains
(Sin = 1) with no jitter (σin = 0 ms). As expected, increasing the amount of
jitter (higher σin values, i.e., moving up on the contour plot) decreases the
value of M. The correlation coefficient between σin and M, when Sin = 1, is
ρσ,M = −0.95 indicating a very high, negative linear relationship. Similarly,
less synchronized spike trains (lower Sin values, i.e., moving left on the
plot) also decrease the value of M. The correlation between Sin and M,
when σin = 0 ms, shows a near-perfect positive linear relationship, with
a correlation coefficient of ρS,M = 0.99 (clearly shown in Figure 4). These
values correspond to a desired fout = 70 Hz (corresponding to Figure 3d).

The results shown in Figure 3 and the strong correlation between the
input parameters and M (see Figure 4) discussed above indicate that our
method can reliably detect and measure input synchrony which was rele-
vant to the firing of response spikes. The method maintained a high relia-
bility for a wide range of the input parameter values: the number of spike
trains (Nin), the desired firing rate ( fout), and the membrane potential rise
per spike (�Vs). However, the robustness of this correlation depends on
the input regime: the strength of the input volleys with respect to the firing
threshold. In particular, this correlation between input synchrony and mea-
sured M is robust as long as the synchronous volleys are superthreshold
(see section 4 for details).

Of particular interest is the case where the LIF neuron is driven by high-
rate inputs, causing it to fire at extremely high rates. Figure 3f shows the
measured synchrony of an LIF neuron with fout = 400 Hz. Comparing this
plot to the others of Figure 3, it is evident that the value of M is higher
than expected when there are very low degrees of input synchrony. This
can be seen in the lower part of the synchrony parameter range—the upper
left half of the plot, which has a darker shade than in the cases with lower
firing rates (see Figures 3a to 3e). Additionally, the value of M is lower
than expected at higher ranges of the synchrony spectrum, as can be seen
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Figure 4: Normalized prespike membrane potential slope (M) for σin = 0, plot-
ted against the full range of Sin values. The circles represent measured data
points for the LIF neuron firing at 70 Hz (corresponding to Figure 3d), while the
line represents perfect linear correlation for comparison.

by the darker areas in Figure 3f being considerably smaller than the dark,
high-synchrony areas of the other plots.

These unexpected results (see Figure 3f) are due to the mean firing ISI
approaching in length to the coincidence window. More specifically, if an
ISI is equal to the coincidence window �ti = w, then the values of the two
bounds (see equations 2.6 and 2.8) become equal. This occurs because in
such circumstances, the firing of a spike due to integration of inputs within
a period equal to the ISI is equivalent to firing solely from input spikes
arriving within a period w. We can investigate the divergent behavior be-
tween the two modes as a function of the ISI (�ti) and coincidence window
length (w). To accomplish this, we define the level of divergence (or relative
difference) between the perfect, nonleaky integrate-and-fire model (PIF),
which represents perfect integration and the LIF model. The relative differ-
ence indicates the degree by which the PIF model differs from the LIF. It is
calculated as the difference between the values of the membrane potential
of the two models (LIF and PIF), divided by the membrane potential of
the original model (i.e., the LIF, at the start of the coincidence window), in
order to estimate how well the PIF model approximates the pre-spike slope
values of the LIF (see appendix A for details). The lower the relative differ-
ence, which occurs at higher firing rates, the more similar the two modes
become. This leads to less accurate results as the distance between the two
models and, by extension, the two bounds becomes smaller. Figure 5 shows
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Figure 5: Relative difference (d) between the LIF and the perfect integrator
models as a function of firing ISI (�ti), for window length w = 2 ms (solid line).
For details on the derivation of the relative difference (d), see appendix A and,
more specifically, equation A.4. The three points marked on the graph corre-
spond to the firing rates of the simulations that produced Figures 3b, (100 Hz),
3d (70 Hz), and 3f (400 Hz). Because we are interested in the relative difference
at high firing rates, the graph does not show the points corresponding to the
firing rates of the simulations that produced Figures 3a (5 Hz corresponding to
�ti of 200 ms) and 3c and 3e (10 Hz corresponding to �ti of 100 ms). Note that
changing the length of the coincidence window w shifts the relative difference
d along the horizontal axis (i.e., increasing the window length moves the curve
to to the right and decreasing the window length moves the curve to the left).

the relative difference (d) as a function of the firing ISI for a fixed window
length w = 2 ms (see equation A.4 in appendix A). This analysis supports
that the two operational modes, as defined in this work, display a con-
vergent behavior as firing rates increase (i.e., the relative difference d, also
known as the level of divergence, becomes smaller). The very low relative
difference between the two models at firing rates of 400 Hz (d2.5 ms = 0.025)
is the reason that the metric produces unexpected results for analyzing data
for this particular extremely high rate firing. In such a case, the two modes
of operation are too similar to be reliably distinguished.

3.2 Results with the LIF Neuron Model with Partial Reset (LIFwPR).
We also measured the normalized prespike membrane potential slope of a
model neuron exhibiting highly irregular firing at high rates. We used the
LIFwPR, with neuron and input parameter values identical to the model
by Bugmann et al. (1997). The inputs to the neuron consisted of 50 Poisson
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Figure 6: The normalized prespike membrane potential slope (M) for the
LIFwPR model firing highly irregularly at rates up to ∼470 Hz (mean ISI ≈
2.1 ms). Each point on the plot shows the value of M (vertical axis) for the
LIFwPR with parameters as described in the text (see Table 1) for a given fir-
ing ISI (1/ fout). The firing rates were achieved by varying the input rates fin
within physiological ranges to achieve the various output firing rates, fout . The
results show that M is always below 0.1 (M ≈ 0.06 on average) for the entire
range of firing rates. This suggests that when the model neuron is firing highly
irregularly at high rates, it operates mainly as a temporal integrator.

spike trains, and each input spike caused a depolarization of the neuron’s
membrane potential by �Vs = 0.16 mV. We used a reset parameter value of
β = 0.91, as it has been shown to be the only value that can produce purely
temporally irregular firing (with no bursting activity that can increase the
firing variability; Bugmann et al., 1997; Christodoulou & Bugmann, 2001).
This is compatible with the high firing irregularity at high rates observed
in cortical neurons (Softky & Koch, 1992, 1993).

The results (see Figure 6) show the value of M being always below
0.1 for the entire range of firing rates. Each firing rate was achieved by
varying input rates within physiological ranges. These results suggest that
neurons firing highly irregularly at high rates operate mainly as temporal
integrators.

Bugmann et al. (1997) suggested that temporal integration and fluctua-
tion detection (i.e., coincidence detection) can coexist and cause irregular
firing, which was indicated by the ISI of an LIFwPR neuron driven by a
fluctuating input current being significantly shorter than the ISI of the same
neuron driven by a constant input current (of the same average value).
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The current results, however, indicate a strong dominance of temporal in-
tegration, and the relatively small contribution of coincidence detection in
the firing of spikes is not sufficiently high to be distinguishable from the
effects of the temporal integration process. This indicates that coincidence
detection is not necessary for producing highly irregular firing at high rates
(which Softky & Koch, 1992, 1993, suggested) and that temporal integration
on its own is sufficient for such a purpose, provided the neuron does not
completely repolarize.

However, our results are not incompatible with the analysis by Softky
and Koch (1993), who express the threshold in number of input pulses, Nth,
necessary to raise the neuron’s membrane potential from rest to discharge.
With the partial reset mechanism, the LIFwPR neuron’s membrane poten-
tial stays very close to the spike threshold during most of the time in a
trial’s duration, assuming the neuron is spiking at high enough rates. More
important, the membrane potential is almost always above the reset poten-
tial Vreset after the first spike is fired. With this in mind, we have shown
(see appendix B) that when the LIFwPR neuron is driven by sufficiently
frequent arriving inputs, it operates equivalent to a neuron with an effec-
tive resting potential V ′

rest equal to the reset potential Vreset ; this results in a
reduction of the effective number of inputs required to fire a spike and a
very short (submillisecond) effective membrane leak time constant. As can
be seen from appendix B, for our simulations N′

th is approximately 9 and
τ ′

m is a function of the membrane potential V(t) and takes values less than
1 ms (≤ 0.9 ms).

Our results are thus in accord with the analysis by Softky and Koch
(1993) who showed that for low Nth values and submillisecond membrane
time constant τm, an LIF neuron operating as a temporal integrator can fire
highly irregularly at high rates (see Figure 8 in Softky & Koch, 1993). From
our analysis, we can therefore conclude that the LIFwPR model, which
models the incomplete postspike repolarization of a neuron, can be used
for reducing the effective number of input spikes N′

th required to cause a
spike and decreasing the effective membrane leak time constant τ ′

m such
that a neuron can fire highly irregularly at high rates, in accordance with
experimental recordings. Moreover, it has to be noted that the LIFwPR
model, apart from modeling different firing regimes more accurately, has
also been shown to be able to reproduce experimental firing statistics (as
shown by Bugmann et al., 1997, on the data analyzed by Softky and Koch,
1992, 1993) and that it enhances learning (Christodoulou & Cleanthous,
2011; Cleanthous & Christodoulou, 2012).

4 Discussion

Our study establishes the correlation between input synchrony Sin and
the slope of the membrane potential prior to firing m. This depends on
normalizing the slope between two bounds. Our results suggest a strong
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correlation between prespike membrane potential slope and presynaptic
synchrony levels that allows us to infer the degree of response-relevant
input synchrony under certain assumptions, namely, the existence of exci-
tation only and of superthreshold volleys. The measure is robust against
the value of the average stimulus, whether it is super- or subthreshold. In
the very rare case when firing results from the integration of a burst of mul-
tiple coincident subthreshold volleys, the measure will underestimate the
synchrony. In a theoretical study, Stein (1967) showed that the slope of the
membrane potential is inversely proportional to the variance of the firing
ISIs for a neuron driven by Poisson inputs. Goedeke and Diesmann (2008)
showed that the membrane potential, as well as its derivative, defines the
response of an LIF model to synchronized inputs. They analytically stud-
ied the dynamics of the behavior of an LIF neuron, in both isolation and
homogeneous networks, and concluded that the synchronization between
neurons depends on both the membrane potential and its derivative. While
these studies prove the existence of a correlation between membrane po-
tential and firing statistics of both individual neurons and networks, our
own work establishes a specific correlation measure between membrane
potential and input statistics. As such, the two results may be considered
complementary.

However, a potential correlation between firing and input statistics is
most likely not as straightforward to investigate, since both the membrane
potential fluctuations and the firing ISI distribution are affected by mul-
tiple parameters of the stimulus. As already mentioned, synchrony in the
presynaptic activity of a neuron can affect its firing rate (Kuhn et al., 2002)
and irregularity (Salinas & Sejnowski, 2002). However, these effects are not
consistent and depend heavily on the state of the neuron. More precisely,
the output firing rate is a nonmonotonic function of the correlation among
excitatory inputs (Kuhn et al., 2002). Additionally, the firing variability
depends heavily on other factors besides the degree of input correlations
(Salinas & Sejnowski, 2002). Our measure relies on the assumption that
changes in input parameters are reflected in the trajectory of the membrane
potential, while similar changes may not affect the distribution of firing ISIs
in a consistent manner.

Our work is more closely related to Kisley and Gerstein (1999) and, more
recently, to DeWeese and Zador (2006) and Kobayashi et al. (2011), in that
we establish a relationship between membrane potential properties and
properties of the input spike trains, in order to infer the latter from mea-
surements of the former. DeWeese and Zador (2006) analyzed membrane
potential dynamics to infer properties of the input population. Similarly,
Kobayashi et al. (2011) developed an algorithm to estimate the time-varying
input rates of the presynaptic population by studying the membrane po-
tential of the neuron. The correlation between membrane potential slope
and input synchrony was studied by Kisley and Gerstein (1999). The work
presented in this letter relies on this correlation to provide a measure of the
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response-relevant input synchrony, which relates to the operational mode
of the neuron. In particular, the normalized prespike membrane potential
slope provides a measure of the relative contribution of temporal integra-
tion and coincidence detection to the firing of a spike or the operation of a
neuron in general.

The choice of the length of the coincidence window, that is, the value of
w, is an important aspect of our metric calculation. It has to be noted that
the effect of this variable on the temporal precision of firing has also been
the subject of a rigorous theoretical study (Reed, Blum, & Mitchell, 2002;
Mitchell, 2005). As we mentioned in section 2.2, the value of this parameter
should reflect the time that is regarded as the maximum temporal distance
between two events that are considered to be coincident (2 ms in our case).
The only limit for the length of the coincidence window is the time step of
the simulation (here 0.1 ms) or, more generally, the temporal resolution of
the data being analyzed. However, the smaller the value of w, the stricter
the definition of coincident activity becomes, which in turn produces lower
M values unless the input spike trains are completely synchronized. This
provides a degree of flexibility for the metric calculation that allows it to be
adapted to various levels of temporal resolution.

The meaning of the value for the length of the coincidence window can
be intuitively understood in terms of the cost parameter found in spike train
distance metrics (see Victor & Purpura, 1996; Victor, 2005; Kreuz et al., 2011),
which controls the sensitivity of the metric to spike count and spike timing,
that is, the assumed resolution of the temporal code. Spike train distance
metrics measure the distance between two spike trains by calculating the
minimum cost of transforming one spike train into the other by adding,
removing, or shifting spikes. By manipulating the cost parameter, one can
control the measured distance between two given spike trains. For instance,
with a small cost parameter value, two very different spike trains will be
measured as having a small distance; they are considered similar by the
metric due to the low cost of shifting spikes. Conversely, with a high-cost
parameter value, two similar spike trains will be measured as having a
large distance; they are considered dissimilar by the metric due to the
high cost of shifting spikes. While the measure presented in our work
measures the response-relevant synchrony of the input spike trains of a
neuron and, by extension, the operational mode of that neuron, the spike
train distance metrics measure the distance, or similarity between a pair or
group of spike trains directly. However, both types of metrics can be used
in different circumstances to measure the temporal precision of the neural
code.

While similar work exists on measuring spike train correlations and syn-
chrony by directly observing the spikes fired from a population of neurons
(Grün, 2009; Staude et al., 2010) or identifying synchronous activity in lo-
cal field potentials (Denker et al., 2011), our proposed measure differs in
that it responds to such correlations between spike trains converging into
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a single neuron only, when they are responsible for the triggering of re-
sponse spikes. In particular, our measure explicitly calculates the degree of
input synchrony directly preceding a response spike and implicitly consid-
ers any previous activity by taking into account the potential at the start
of the coincidence window w in the calculation. The higher the potential
of the neuron’s membrane at the start of the coincidence window is, the
lower the relative contribution of the synchronous spike trains within the
coincidence window would be to the response. Consequently, the slope of
the membrane potential within the coincidence window is low, denoting
a higher contribution of temporal integration. In this way, our measure
is concerned only with the input statistics that affect the neuron’s own
spiking; in other words, it is sensitive to the response-relevant statistics of
the input. It is this particular feature that links our measure’s estimation
of response-relevant input synchrony to the underlying operational mode.
The operational mode of a neuron is not defined solely by the synchrony of
the spike trains it receives, but also by whether that synchronous activity
causes firing.

Our study focused solely on excitatory inputs that caused the neuron to
fire a response in order to infer the degree of response-relevant synchrony
specifically. This simplifying choice was made to establish the viability of
the slope of the membrane potential in inferring presynaptic synchrony. The
potential inclusion of inhibitory inputs in our models would require our
methods, the slope bound calculations, to account for the effects of inhibi-
tion on the range of potentials the membrane can acquire. More specifically,
inhibition can drive the membrane potential below Vrest , which can cause
prespike membrane potential slopes with higher values than the ones the
upper bound we have defined for this study (see equations 2.7 and 2.8)
could capture.

It should be noted that the intent of the work presented here is not to mea-
sure absolute input synchrony in itself. The value of M is considerably less
than 1 in cases where there is very high input synchrony (Sin ≈ 1, σin ≈ 0),
but the depolarization caused by a single synchronous volley is not enough
to cause a response. This occurs when the total number of input spike trains,
combined with the level of depolarization per spike, is insufficient to reach
the firing threshold from rest: Nin�Vs < (Vth − Vrest ) (i.e., volleys are sub-
threshold). In such a case, a series of two or more synchronous volleys of
spikes is required to cross the threshold, depending on the delay between
each volley. The measure we have presented is therefore a measure of the
synchrony between all input spikes that were responsible for any given
response spike.

Generally a neuron can operate in a sub- or superthreshold input regime.
The different input regimes are defined in terms of the asymptotic time-
averaged membrane potential 〈V〉 in the absence of a threshold. If 〈V〉 < Vth,
the neuron is operating in a subthreshold regime, and spikes are caused by
fluctuations that can briefly drive the membrane potential above threshold.
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Conversely, if 〈V〉 > Vth, the neuron is operating in a superthreshold regime,
and spikes are fired quite regularly, and inevitably, by the integration of
inputs (Gerstner & Kistler, 2002).

The mean membrane potential, again in the absence of a threshold, for
our neuron is equal to 〈V〉 = �VsNin finτm. We can also define the total
contribution of a volley as �Vv = Nin�Vs. In our case, however, by using
synchronous volleys of input spikes, we can define four conditions in terms
of the sub- and superthreshold regimes:

1. Case where �Vv < Vth and 〈V〉 < Vth. This is analogous to a true sub-
threshold regime where spikes are fired only when two or more volleys
arrive close enough for their combined contribution to reach the threshold.
In other words, output spikes are caused by fluctuations in the arrival times
of subthreshold volleys. When these relations hold, our measure will not
produce a value of M = 1 when Sin = 1 due to the contribution of each indi-
vidual volley being subthreshold. Spikes in such cases are caused with very
low probability and depend on the timing of individual volleys and spikes,
that is, the fluctuations in the input. Figure 3a corresponds to this case.

2. Case where �Vv > Vth and 〈V〉 < Vth. If this is the case, then our measure
will be able to achieve a value of 1 (if Sin = 1) regardless of whether 〈V〉 >

Vth. Although this may correspond to a subthreshold regime, the presence
of superthreshold volleys makes firing of spikes a certainty, and we can
therefore refer to it as a superthreshold volley regime. Figures 3c and 3e
correspond to this case.

3. Case where �Vv < Vth and 〈V〉 > Vth. In this interesting case, spikes are
fired almost surely due to the neuron’s being in a superthreshold regime in
the general sense, but our measure will never achieve M = 1 because the
contribution of each individual volley is subthreshold. Therefore, although
the neuron is operating in a superthreshold regime, in terms of the con-
tribution of single volleys it is operating in a subthreshold volley regime.
While the spikes within a single volley may coincide (highly synchronous
volley, that is, Sin ≈ 1), the total dispersion among all the spikes that caused
the neuron to fire is high. The value of M reflects the total dispersion among
all the contributing spikes, not the dispersion among spikes within a single
volley. This emphasizes the difference between input synchrony in the tra-
ditional sense and the response-relevant input synchrony that we measure.
The operational mode of a neuron is determined by the temporal disper-
sion of all the spikes that were responsible for the neuron’s firing (Kisley &
Gerstein, 1999; Rudolph & Destexhe, 2003). Figure 3b corresponds to this
case.

4. Case where �Vv > Vth and 〈V〉 > Vth. In this case, the mean drive is very
high, as is the depolarization caused by individual volleys. The behavior of
the measure is the same as for case 2, as the mean drive has little effect on
our measure as long as �Vv is high enough to consistently cause a response.
The measure, however, will behave unpredictably when the mean drive is
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strong enough to cause very high firing rates, as has been already discussed.
Figures 3d and 3f correspond to this case.

In summary, the correlation between input synchrony and M is more
dependent on the relationship between �Vv and Vth and is only slightly
affected by the mean drive 〈V〉. When volleys have a total contribution
that is subthreshold (cases 1 and 2), then M < 1 even when Sin = 1 and
σin = 0 ms. This reflects the fact that the response was caused by a number
of volleys, each of which consisted of completely synchronized spikes but
whose total, summed intersynchrony is much lower.

Our measure could be applied to membrane potential data generated
by more complex neuron models. It would be particularly interesting, after
further refinement, to use this measure to provide insight into the oper-
ational mode and, by extension, coding mechanisms employed by a real
cortical neuron, using knowledge of the neuron’s physiology and intracel-
lular membrane potential data alone. In addition, it would be interesting
to study the measure itself further and how it can be extended to provide
more information on the inner workings of a neuron. It would most likely
be more informative and could help make stronger inferences concerning
the input statistics if the distribution of M values is studied instead of the
average value alone.

Appendix A: Upper- and Lower-Bound Convergence
at High Firing Rates

In this appendix we demonstrate that the indicative membrane potential
slopes (Ui and Li) associated with the two operational modes, temporal
integration and coincidence detection, converge onto each other at high
firing rates. The level of convergence is dependent on the length of the
coincidence window (w), which reflects the assumed temporal precision of
the neural code. From this convergence, it follows that at very high firing
rates, the two operational modes become indistinguishable. The purpose of
this appendix is to formally describe this convergent behavior.

In order to grasp the intuition behind this phenomenon, we first consider
the case where a firing ISI is equal to the coincidence window, �ti = w . In
this case, it is clear from equations 2.6 and 2.8 that Ui = Li, that is, the two
operational modes are described by the same slope value and are therefore
identical and indistinguishable.

More generally, at very high firing rates, the ISIs are much shorter than
the membrane leak time constant (�ti � τm). When this holds, the solution
of equation 2.1 for constant input,

V(t) = Vrest + IR
(

1 − exp
(

− t − t0

τm

))
, (A.1)
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can have its leak term replaced by an approximation of the term’s Taylor
series expansion:

exp
(

− t − t0

τm

)
≈ 1 − t − t0

τm
. (A.2)

Therefore, from equations A.1 and A.2, the membrane potential equation
of the LIF model is simplified and approximated by

V ′(t) = Vrest + I(t − t0)

C
, (A.3)

where the prime here signifies the membrane potential of the approximating
model and C is the capacitance of the membrane.

This approximating model is the perfect (i.e., nonleaky) integrate-and-
fire neuron model (PIF), which simply integrates postsynaptic inputs with-
out losing any of its charge over time. We then use equations A.1 and A.3
to calculate the relative difference between the two models as a function
of the ISI (�ti). The relative difference is measured at the beginning of the
prespike coincidence window because the membrane potential at this time
determines the slope of the secant line associated with that specific spike
(see equation 2.3 and Figure 2a). Therefore, the relative difference for any
given ISI is calculated as the difference between the two models at the
beginning of the coincidence window, ti − w,

dti,w
= |V(ti − w) − V ′(ti − w)|

V(ti − w)
, (A.4)

where V(t) and V ′(t) are given by equations A.1 and A.3, respectively. The
relative difference is used as a measure of dissimilarity between the two
models, and by extension, it measures the distinguishability between the
two operational modes. The higher the relative difference, the more distin-
guishable the two operational modes are, and vice versa. Therefore, the rela-
tive difference d represents the level of divergence between the LIF and PIF.

Figure 5 shows the relative difference d (see equation A.4) as a function of
the ISI (�ti) at high firing rates for a coincidence window length w = 2 ms.
Note that changing the length of the coincidence window w shifts d along
the horizontal axis, that is, increasing the window length moves the curve
to the right and decreasing the window length moves the curve to the left.
By decreasing the coincidence window length, we could effectively increase
the relative difference for the same values of �ti, thus improving the distin-
guishability of operational modes at higher rates. A coincidence window
of the order of microseconds, indicating a very high temporal precision
of firing, is experimentally observed and used in models of coincidence
detectors in the auditory system (Gerstner et al., 1996; Oertel et al., 2000;



Distinguishing the Causes of Firing 2341

Marsalek & Lánský, 2005). However, for neurons with membrane time con-
stants between 10 ms and 20 ms (as in our study, where τm = 10 ms), the
temporal precision is considered to be between 1 ms and 3 ms (Gerstner
et al., 1996).

Appendix B: Analysis of the Behavior of the LIF Neuron
with Partial Reset at High Firing Rates

In this appendix, we demonstrate how the partial reset mechanism of the
LIFwPR model effectively reduces the number of input spikes N′

th required
to cause an LIF neuron to fire and results in a very short effective membrane
time constant τ ′

m. These effects are relevant whenever the membrane poten-
tial of the neuron V(t) is above the partial reset potential Vreset . While this
may not hold true for the entirety of a simulation, for the high-firing-rate
regime explored using this model, the membrane potential remains above
the reset value for most of the time and for extended continuous periods of
increased activity.

We use the definition of Nth in the same way as Softky and Koch (1993),
who described their models in terms of the difference in potential between
threshold and rest, divided by the depolarization per spike, as in

Nth = Vth − Vrest

�Vs
. (B.1)

This is done in order to make our results comparable to their analysis,
which showed how the coefficient of variation (CV) varied as a function of
the time constant τm and Nth (see Figure 8 in Softky and Koch, 1993).

Assuming that Vreset ≥ Vrest (which holds for any model with a reset
parameter β ≥ 0), for any given time where V(t) ≥ Vreset , the model neuron
can be expressed in terms of an equivalent model with effective resting
potential V ′

rest = Vreset and effective time constant τ ′
m (the prime signifies a

parameter or variable of the equivalent model). From this, it follows that
N′

th ≤ Nth, since V ′
rest ≥ Vrest , as can be seen from

N′
th = Vth − V ′

rest

�Vs
= Nth(1 − β). (B.2)

Substituting for the parameter values used for our simulations, Vth =
15 mV, Vrest = 0 mV, and �Vs = 0.16 mV, the original value of Nth is ap-
proximately 94. For V ′

rest = 13.65 mV, however, which is the reset value of
the LIFwPR model where β = 0.91, the effective number of input spikes
required to fire a spike N′

th is reduced to just nine (approximately).
The effective time constant’s value τ ′

m should be such that (assuming
the inputs are the same for both models) the change in membrane potential



2342 A. Koutsou, C. Christodoulou, G. Bugmann, and J. Kanev

within a fixed period of time in the equivalent model should be equal to that
of the original model, dV

dt = dV ′
dt . Since the two models share the same input,

we can calculate τ ′
m by ignoring the input terms of the two models and equat-

ing the leak term of equation 2.1 with the leak term of the equivalent model,

dV ′

dt
= −V(t) − V ′

rest

τ ′
m

(B.3)

Equating equations 2.1 and B.3, replacing the effective resting value V ′
rest

with the original reset value Vreset and solving for τ ′
m gives

τ ′
m = τm

V(t) − Vreset

V(t) − Vrest
. (B.4)

Therefore, the value of the effective time constant τ ′
m constantly changes

as a function of the membrane potential V(t). For our simulations, we can
calculate the range of values that τ ′

m takes, first by substituting the parameter
values we used, τm = 10 ms, Vrest = 0 mV, and Vreset = 13.65 mV, and then
by calculating τ ′

m for the known range of V(t) using equation B.4. Thus, for
our simulations, τ ′

m = 10(V(t) − 13.65)/V(t).
Since the effects discussed here are relevant for membrane potential

levels above the reset potential, for our simulations we calculate the
range of τ ′

m for membrane potential values between V(t) ∈ [Vreset,Vth] =
[13.65 mV, 15 mV] giving, respectively, τ ′

m ∈ [0 ms, 0.9 ms].
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