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Pseudosparse neural coding in the visual system
of primates
Sidney R. Lehky 1,2✉, Keiji Tanaka1 & Anne B. Sereno 3,4

When measuring sparseness in neural populations as an indicator of efficient coding, an

implicit assumption is that each stimulus activates a different random set of neurons. In other

words, population responses to different stimuli are, on average, uncorrelated. Here we

examine neurophysiological data from four lobes of macaque monkey cortex, including V1,

V2, MT, anterior inferotemporal cortex, lateral intraparietal cortex, the frontal eye fields, and

perirhinal cortex, to determine how correlated population responses are. We call the mean

correlation the pseudosparseness index, because high pseudosparseness can mimic statistical

properties of sparseness without being authentically sparse. In every data set we find high

levels of pseudosparseness ranging from 0.59–0.98, substantially greater than the value of

0.00 for authentic sparseness. This was true for synthetic and natural stimuli, as well as for

single-electrode and multielectrode data. A model indicates that a key variable producing

high pseudosparseness is the standard deviation of spontaneous activity across the popu-

lation. Consistently high values of pseudosparseness in the data demand reconsideration of

the sparse coding literature as well as consideration of the degree to which authentic

sparseness provides a useful framework for understanding neural coding in the cortex.

https://doi.org/10.1038/s42003-020-01572-2 OPEN

1 Cognitive Brain Mapping Laboratory, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan. 2 Computational Neurobiology Laboratory, The
Salk Institute, La Jolla, CA 92037, USA. 3 Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA. 4Weldon School of
Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA. ✉email: sidney@salk.edu

COMMUNICATIONS BIOLOGY |            (2021) 4:50 | https://doi.org/10.1038/s42003-020-01572-2 |www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01572-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01572-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01572-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01572-2&domain=pdf
http://orcid.org/0000-0002-1563-2647
http://orcid.org/0000-0002-1563-2647
http://orcid.org/0000-0002-1563-2647
http://orcid.org/0000-0002-1563-2647
http://orcid.org/0000-0002-1563-2647
http://orcid.org/0000-0003-2870-4985
http://orcid.org/0000-0003-2870-4985
http://orcid.org/0000-0003-2870-4985
http://orcid.org/0000-0003-2870-4985
http://orcid.org/0000-0003-2870-4985
mailto:sidney@salk.edu
www.nature.com/commsbio
www.nature.com/commsbio


The efficient coding hypothesis of Barlow1, in which a neural
code is optimized to minimized the number of spikes
needed to transmit a given signal, postulates high sparse-

ness in populations of visual neurons. Efficient coding under
criteria based on Shannon information theory has become an
important concept organizing thinking about visual processing2–6.
Neurophysiological studies have characterized sparseness and
other measures of efficient coding across various areas of the
visual cortex7–18, as well as the lateral geniculate nucleus19 and
retina20. In addition to vision, the concepts of efficient coding and
sparseness have been applied to data from a variety of other
domains, including audition21, olfaction22, somatosensation23,
and memory24.

Sparseness is a function of the probability distribution of neural
responses. Responses with high sparseness have responses that
are disproportionately at the tails of the probability distribution
(heavy-tailed) relative to a Gaussian distribution. Neural
responses with low sparseness have a distribution with thin tails.
A variety of sparseness measures exist in the literature9,13,14,25.
The sparseness measure used in this study is the reduced kurtosis
of the response distribution, which has previously been used in a
number of theoretical and experimental studies14,26–28:

Sparseness ¼
PN
i¼1

ri � �rð Þ4

N � 1ð Þs4 � 3:
ð1Þ

Here, ri is the response of the ith cell in the population to a single
stimulus and N is the number of cells in the population. Mean
response across the population to a single stimulus is �r, and the
standard deviation of the responses is indicated by s. The reduced
kurtosis is the regular statistical kurtosis with three subtracted so
that the Gaussian distribution is normalized to have a value of 0.
Sparseness >0 indicates increasingly sparse coding.

Population sparseness is sparseness for a single stimulus across
a neural population (with average sparseness calculated over the
stimulus set). This differs from lifetime sparseness, sometimes
called neural selectivity14, which is determined by the probability
distribution of a single neuron to a set of stimuli. We are con-
cerned here with population sparseness and not lifetime
sparseness.

The expectation during sparse coding is that different neurons
in the population are activated by different stimuli. In other
words, during sparse coding the response vectors for a given
neural population should ideally be uncorrelated for different
stimuli. This is illustrated by Fig. 1a, where responses to the same
model neural population are shown to different stimuli. Each
circle in a horizontal row represents a neuron in the population,
and gray levels indicate responses (activities) to a stimulus.
Vertically, the responses for different stimuli for the neural
population are shown. Under authentic sparseness, population
response vectors for different stimuli are uncorrelated, so that a
different random set of neurons is activated for each stimulus.

Population response statistics are shown in the form of a
population response spectrum in Fig. 1b. The x-axis gives index
numbers for members of the population, not necessarily in any
particular order. The y-axis gives the mean (black line) and
standard deviation (gray shading) of responses for each neuron in
the population over all members of the stimulus set. Because
response vectors for different stimuli during authentic sparseness
are uncorrelated, the population spectrum is flat, and standard
deviations are large.

Next, we show the median probability density function (pdf) of
neural responses across the model population for single stimuli
during authentic sparseness (Fig. 1c). Each stimulus produces a
single pdf across the neural population, and we show the median

pdf from all the members of the stimulus set. We are looking at
pdfs across a neural population and not lifetime pdfs of a single
neuron across a stimulus set.

The significance of the pdf for our purposes is that the pdf
defines population sparseness. There are a variety of sparseness
measures, as mentioned earlier, but in essence they boil down to
some measure on the shape of the population pdf. If different
conditions (both receptive field properties and the stimulus set)
lead to the same population response pdf, then they have the
same sparseness.

Having described the situation where the population response
is uncorrelated for different stimuli (Fig. 1, left column), we
present the opposite extreme where the population response to
different stimuli is perfectly correlated (Fig. 1, right column; why
this correlated situation is important will be made clear below). In
contrast to the uncorrelated population response spectrum
(Fig. 1b), which is flat, the correlated population response spec-
trum (Fig. 1e) is bumpy reflecting different mean responses for
different members of the population. Also, because population
responses are completely correlated for different stimuli, the
population response spectrum (Fig. 1e) has no variance. The
median pdf of responses for all the members of the correlated
stimulus set is shown in Fig. 1f.

The important point to emphasize here is that response pdfs
can be essentially identical for uncorrelated stimuli (Fig. 1c) and
for perfectly correlated stimuli (Fig. 1f). And as the pdfs deter-
mine sparseness, uncorrelated and correlated responses can
generate the same levels of sparseness. Although both cases show
equal measures of sparseness, only the uncorrelated case (Fig. 1,
left column) corresponds to genuine sparseness. The correlated
case exhibits what we call pseudosparseness.

We define pseudosparseness as the mean correlation coefficient
for population response vectors over the stimulus set. For
example, given a population size of 100 neurons, the population
response for a single stimulus will be a vector of length 100. Each
stimulus will generate a different response vector, and the mean
correlation of all pairs off response vectors for the stimulus set
can be calculated to give the pseudosparseness. If the response
vectors are uncorrelated, pseudosparseness will be 0.0 (Fig. 1b). If
the response vectors are completely correlated, pseudosparseness
will be 1.0 (Fig. 1e).

Sparseness values are identical under the authentic sparseness
condition (Fig. 1b) and under the pseudosparseness condition
(Fig. 1e) in this example, being equal to 1.705 (as measured by the
reduced kurtosis, Eq. (1), of the response pdfs in Fig. 1c, f). Yet
despite having identical sparseness, the population responses
produce radically different values of pseudosparseness.

Although sparseness levels have been measured in different
areas of the visual system, as described above, there has been no
attempt to distinguish between authentic sparseness and pseu-
dosparseness. Here, we examine the issue by reanalyzing single-
electrode and multielectrode neurophysiological data for various
areas in four different lobes of monkey cortex (occipital, tem-
poral, parietal, and frontal) responsive to synthetic and natural
visual stimuli, including V1, V2, MT, anterior inferotemporal
cortex (AIT), lateral intraparietal cortex (LIP), the frontal eye field
(FEF), and perirhinal cortex (Prh).

Results
Pseudosparseness in the monkey visual cortex. We examined
12 neurophysiological data sets (15 data sets total when including
all subsets of data) collected from various regions of visually
responsive cortex in macaque monkeys, all of them stimulated
with various visual patterns. For each data set, we
plotted the population response spectrum and calculated the
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pseudosparseness and sparseness indices. In all cases, the pseu-
dosparseness index was high, in excess of 0.59 (on a scale
0.0–1.0). This indicates that cortical neural population response
vectors are highly correlated for different stimuli, contrary to the
general assumption when interpreting population sparseness
measures that population responses for different stimuli are
uncorrelated (i.e., have a pseudosparseness index= 0.0). Among
the 15 response spectra for the different data sets, the Pearson
correlation between sparseness and pseudosparseness was r=
0.441, significantly different from zero (p= 0.016 based on
bootstrap resampling, 95% confidence interval (CI)= [0.124,
0.734], power > 0.99). The correlation coefficient was likely
reduced because it pooled data from different experimental
designs, and involved different population sizes.

Population response spectra from V1 using multielectrode
data29,30 are shown from one monkey, using grating stimuli
(pseudosparseness= 0.782 ± 0.003, Fig. 2a) and natural stimuli
(pseudosparseness= 0.778 ± 0.004, Fig. 2b), both with the same
set of neurons (N= 66) for the two stimulus conditions. The
response spectrum for a second monkey (N= 44) is shown for
grating stimuli (pseudosparseness= 0.594 ± 0.008, Fig. 2c) and
natural stimuli (pseudosparseness= 0.669 ± 0.006, Fig. 2d).
Pooled data for the two monkeys are shown for grating stimuli
(pseudosparseness= 0.722 ± 0.004, Fig. 2e) and natural stimuli
(pseudosparseness= 0.721 ± 0.004, Fig. 2f). Pseudosparseness is
essentially the same for gratings and natural stimuli. (Pseudos-
parseness values are given as mean ± SD, where standard
deviation (SD) is determined by bootstrap resampling).
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Fig. 1 Comparison between sparseness and pseudosparseness. a–c Example showing authentic sparseness. a Responses of the same neural population to
different stimuli, under authentic sparseness. Each row of circles shows the responses to a different stimulus, with gray levels indicating response levels.
Population responses to different stimuli are uncorrelated and a different random set of neurons is activated by each stimulus. b An example population
response spectrum for authentic sparseness. Mean stimulus response (black) and response standard deviation (gray shading) for each neuron in the
population is plotted on the y-axis, with neurons assigned arbitrary index numbers along the x-axis. For this example, each stimulus produces a set of
responses across the population described by a gamma distribution. Parameters for the gamma distribution are identical for each member of the stimulus
set. The pseudosparseness index calculates the mean correlation coefficient between population response vectors between all members of the stimulus
set. c Median probability density function (pdf) for the neural population responses for individual stimuli under authentic sparseness. Each stimulus
produces a single pdf for the responses across the neural population, and then the median pdf from all stimuli is determined and shown. d–f Example
showing pseudosparseness. d Responses of the same neural population to different stimuli, under pseudosparseness. Under pseudosparseness, population
response vectors for different stimuli are correlated, so that the same set of neurons is always activated for all stimuli. e An example population response
spectrum for pseudosparseness. The population spectrum is produced using the same gamma distribution for population responses as used for authentic
sparseness. For pseudosparseness, however, population response vectors for different stimuli are perfectly correlated. Therefore, the population spectrum
has a standard deviation of zero, and pseudosparseness= 1.0. f Median probability density function for individual stimulus responses under maximum
pseudosparseness. Note that this probability density function is identical to that under authentic sparseness in c. In the plots for the model N= 100
neurons with n= 10,000 stimuli per neuron.
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Going beyond the pseudosparseness index, the entire response
spectra themselves, using grating stimuli (Fig. 2a) and natural
stimuli (Fig. 2b), are almost identical. Again, these two response
spectra involve an identical population of neurons, but using
different stimulus sets. The Pearson correlation between the
response spectra (calculated neuron by neuron for the respective
spectra) is 0.987 (95% CI= [0.979, 0.992]). Response spectra for
the second monkey are shown in Fig. 2c, d, with correlation 0.989
(95% CI= [0.979, 0.994]).

It is possible that population statistics, such as pseudosparse-
ness, may depend on whether the population is recorded
simultaneously (using multielectrodes) or sequentially (using
single electrodes). In order to compare multielectrode data with
single-electrode data, we took ten multielectrode recording
sessions (involving three monkeys) all with identical stimuli,
selected one neuron randomly from each session and synthesized
a sequential population of N= 10 neurons. Single-electrode
populations were repeated 10,000 times using a different random
sample of neurons from the various sessions. Example single-
electrode populations are shown for grating stimuli (Fig. 3a) and
natural stimuli (Fig. 3b). Average population statistics over
the 10,000 replications were pseudosparseness= 0.715 ± 0.113

(gratings) and 0.727 ± 0.115 (natural images). We also have a
single-electrode V1 sample from a different data set14,31 involving
a single monkey using synthetic stimuli (Fig. 3c), with a similar
value of pseudosparseness= 0.742 ± 0.009.

Pseudosparseness values as indicated above were comparable for
multielectrode (Fig. 2a, b) and single-electrode data (Fig. 3a, b) in
the same data set. In contrast, sparseness values were much larger
for multielectrode data than for single-electrode data. For multi-
electrodes, sparseness= 2.241 ± 2.254 (SE= 0.111) for gratings, and
sparseness= 3.041 ± 2.792 (SE= 0.120) for natural images. For
single-electrodes, sparseness=−0.721 ± 0.628 (SE= 0.029) for
gratings, and sparseness=−0.587 ± 0.665 (SE= 0.031) for natural
images.

Since population size for the multielectrode data (Fig. 2a, b)
was N= 66 and population size for the single-electrode data
(Fig. 3a, b) was N= 10, we examined if population size affected
population statistics. This was done by randomly subsampling the
neurons from the multielectrode population into populations of
different sizes, repeating each subpopulation 10,000 times.

Pseudosparseness as a function of population size for multi-
electrode data are plotted for gratings (Fig. 4a) and natural stimuli
(Fig. 4b). Different populations sizes were created by randomly
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Fig. 2 Response spectra for V1, using multielectrodes with grating and natural stimuli. a Monkey A response spectrum using grating stimuli. N= 66
neurons with n= 416 stimuli per neuron. b Monkey A response spectrum using natural stimuli. N= 66 neurons with n= 540 stimuli per neuron. cMonkey
B response spectrum using grating stimuli. N= 44 neurons with n= 416 stimuli per neuron. d Monkey B response spectrum using natural stimuli. N= 44
neurons with n= 540 stimuli per neuron. e Pooled data from both monkeys using grating stimuli. f Pooled data from both monkeys using natural stimuli.
Neurons were the same for each monkey when using grating or natural stimuli (Data from Coen-Cagli et al.29). Mean pseudosparseness and median
sparseness values (median because sparseness values are strongly right skewed) are given here and in subsequent figures. Gray error bars represent
standard deviation.
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subsampling the data from Fig. 2a, b. When matching the single-
electrode population size (N= 10), the single-electrode pseudos-
parseness is about one standard deviation lower than the
multielectrode value. The difference (multi–single) has 95% CI
= [−0.057, 0.251] for gratings and CI= [−0.083, 0.235] for
natural stimuli, based on bootstrap resampling. The difference is
not statistically significant against a null hypothesis of equal
means (p= 0.110 for gratings, p= 0.144 for natural stimuli, two-
sided) based on bootstrap resampling, power > 0.99 in both cases.
Thus, the electrode configuration (single vs. multi) is not a major
factor affecting pseudosparseness (i.e., average population
correlation) measurements.

Sparseness as a function of population size is plotted for
gratings (Fig. 4c) and natural stimuli (Fig. 4d). Sparseness is more
sensitive to population size than pseudosparseness because

sparseness depends on the tails of the neural response probability
density function across a population, and small populations do
not allow accurate estimations of the tails. For sparseness, the
multielectrode and single-electrode data are in very close
agreement given matching population sizes. The difference
(multi–single) has 95% CI= [−0.745, 1.300] for gratings and
CI= [−0.705, 1.518] for natural stimuli, based on bootstrap
resampling. The difference is not statistically significant against a
null hypothesis of equal means (p= 0.353, power > 0.99 for
gratings; p= 0.615, power= 0.835 for natural stimuli, two-sided).
Again, electrode configuration is not a major factor affecting
sparseness measurements.

In addition to V1, we have pseudosparseness values
obtained from a variety of extrastriate areas, including V2
(refs. 32–34; pseudosparseness= 0.700 ± 0.064, Fig. 5a),
MT35,36 (pseudosparseness= 0.621 ± 0.010, Fig. 5b), Prh
cortex37 (pseudosparseness= 0.813 ± 0.006, Fig. 5c), and area
TE in AIT cortex37 (pseudosparseness= 0.642 ± 0.012,
Fig. 5d). The AIT and Prh data were collected with the same
set of object stimuli. For all these extrastriate areas
pseudosparseness is very high, far greater than zero, as was
the case for V1. Note that the MT data mimic free viewing by
introducing simulated saccades in a video using natural
stimuli (similar to the sparse coding study by Vinje and
Gallant10). The MT response spectrum using these natural
stimuli does not appear to be notably different from the other
data.

We have a second population response spectrum using shape
stimuli from AIT12 (Fig. 6a), with a pseudosparseness index of
0.815 ± 0.098, similar to the value produced by the first AIT data
set described above. In addition to data from the ventral visual
stream in AIT, we show the population response spectrum of data
collected from the dorsal stream in LIP12,38, using the same set of
shape stimuli (Fig. 6b). These LIP data produced a pseudosparse-
ness index of 0.978 ± 0.011. Finally, we show the population
response spectrum of FEF data with again the same shape
stimuli39 (Fig. 6c), with a pseudosparseness index of 0.971 ± 013.

In addition to examining the pseudosparseness index using
shape stimuli in different cortical areas, we also looked at
responses to the retinotopic location of stimuli. The population
response spectrum for stimulus location in AIT data11,40 is shown
in Fig. 6d, with a pseudosparseness index of 0.938 ± 0.030. For
LIP data11,38, the location response spectrum is shown in Fig. 6e,
with a pseudosparseness index of 0.593 ± 0.144. Finally, for FEF
(previously unpublished data from Peng et al.39), the location
response spectrum is shown in Fig. 6f, with a pseudosparseness
index of 0.943 ± 0.025.

Pseudosparseness model. The purpose of this model is to
reproduce typical values of the pseudosparseness index observed
in the cortical data. The model consists of a population of two-
dimensional Gaussian receptive fields activated by a set of stimuli.
Each stimulus produces a population response vector. The mean
correlation coefficient is calculated to provide the pseudosparse-
ness index for the given stimulus set and receptive field set. For
our purposes, the nature of the feature space defined by the model
is arbitrary. The 2D receptive fields may be, for example, in
physical space (denoting stimulus locations), shape space, color
space, or motion space, and so forth.

The receptive field population forms a hexagonal grid of
overlapping cells. Each Gaussian receptive field response is
defined by:

r ¼ G μG; σG
� �

e
� x�x0ð Þ2þ y�y0ð Þ2

2σ2

� �
þ O μO; σO

� �
;

ð2Þ
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Fig. 3 Response spectra for V1 using single-electrode data. a Response
spectrum using grating stimuli. N= 10 neurons with n= 416 stimuli per
neuron. b Response spectrum using natural stimuli. N= 10 neurons with
n= 540 stimuli per neuron. Neurons in a and b are the same. These single-
electrode data were synthesized from multielectrode data (Data from
Coen-Cagli et al.29). c Response spectrum using synthetic stimuli. N= 24
neurons with 157 stimuli per neuron (Data from Lehky et al.14,31). Gray error
bars represent standard deviation.
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Fig. 4 Comparison between multielectrode and single-electrode V1 data for pseudosparseness and sparseness values as a function of population size.
a Comparison of pseudosparseness using grating stimuli. b Comparison of pseudosparseness using natural stimuli. c Comparison of sparseness using
grating stimuli. d Comparison of sparseness using natural stimuli. Single-electrode population was synthesized from multielectrode data by selecting one
cell from different multielectrode recording sessions from the same data set. Multielectrode data was subsampled to produce various population sizes.
Entire curves were generated for completeness, but the critical comparison is that between the N= 10 single-electrode population and the N= 10
multielectrode population. N= 5–60 neurons on the x-axis with 10,000 resampled population activities based on n= 416 stimuli (gratings) or n=
540 stimuli (natural images) for each neuron (Data from Coen-Cagli et al.29).

0 20 40 60 80
cell index

0

10

20

30

40

50

m
ea

n 
re

sp
on

se
 (s

pi
ke

s/
se

c) pseudosparse = 0.707
sparseness = 9.571

AIT
object stim
single electrode

d.

0 20 40 60 80
cell index

0

10

20

30

40

m
ea

n 
re

sp
on

se
 (s

pi
ke

s/
se

c) pseudosparse = 0.823
sparseness = 3.508

perirhinal
object stim
single electrode

c.
0 10 20 30 40

cell index

0

40

80

120

160

m
ea

n 
re

sp
on

se
 (s

pi
ke

s/
se

c) pseudosparse = 0.621
sparseness = 2.542

MT
naturalistic stim
single electrode

b.

0 10 20 30
cell index

0

10

20

30

40

m
ea

n 
re

sp
on

se
 (s

pi
ke

s/
se

c) pseudosparse = 0.693
sparseness = 1.088

V2
gratings
multielectrode

a.

Fig. 5 Response spectra for four extrastriate cortical areas using a variety of stimuli. a Response spectrum from V2. N= 37 neurons with 8 stimuli per
neuron (Data from Zandvakili and Kohn32 and Semedo et al.33). b Response spectrum from MT. N= 45 neurons with 200 stimuli per neuron (Data from
Nishimoto and Gallant36). c Response spectrum from perirhinal cortex. N= 92 neurons with n= 110 stimuli per neuron (Data from Lehky and Tanaka37).
d Response spectrum from anterior inferotemporal cortex (AIT). N= 122 neurons with n= 110 stimuli per neuron (Data from Lehky and Tanaka37). Gray
error bars represent standard deviation.
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where (x0, y0) is the receptive field center in feature space. The
receptive field radius is given by σ, indicating one space constant
of the receptive field. The response for each neuron has a
multiplicative gain G and an additive offset O. Offset is the
spontaneous activity or baseline activity for each neuron.
Heterogeneity in responses across the population is introduced
by randomly setting gain and offset for each neuron in a Gaussian
fashion, so that G(μG, σG) has mean gain μG and standard
deviation of the gain σG, while O(μO, σO) has mean offset μO and
standard deviation of the offset σO.

Two other parameters define the receptive field population. The
first is receptive field spacing, the distance between receptive field
centers (in feature space, not necessarily in physical space), denoted
by η. The second is receptive field dispersion, how spread out
receptive field centers are across the feature space (in essence the
diversity of receptive fields in feature space). In retinotopic space,
for example, dispersion would indicate how far receptive fields
centers are spread out from the fovea11,41. For other feature spaces
(spatial frequency, orientation, etc.), dispersion measures the range

of receptive field centers within that feature space. The receptive
field dispersion is a diameter in feature space denoted by γ.

In addition to the properties of the receptive field population, the
model defines properties of the stimulus set. Each stimulus is a
point in the feature space (we don’t need to specify it any more than
that for present purposes). A region of feature space containing the
entire stimulus set is the stimulus set field. The number of stimuli in
the stimulus set is n, and the n members of the stimuli are
uniformly distributed over the stimulus field. For convenience we
define the stimulus set field to be a region of feature space enclosed
by a circle. The diameter of this circle is the stimulus set dispersion,
denoted by ϕ. The size of the stimulus dispersion indicates the
amount of diversity within the stimulus set.

Each stimulus activates a point on the receptor mosaic and
activates the overlapping Gaussian receptive fields to varying
degrees, forming a population response vector for that stimulus.
The set of population response vectors for all stimuli allows
plotting of the population response spectrum for the model, and
calculation of the pseudosparseness and sparseness values.
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Fig. 6 Response spectra for three cortical areas using either shape or retinotopic location stimuli. a Anterior inferotemporal cortex (AIT) data for
stimulus shape. N= 85 neurons with n= 8 stimuli per neuron (Data from Lehky and Sereno12). b Lateral intraparietal cortex (LIP) data for stimulus shape.
N= 53 neurons with n= 8 stimuli per neuron (Data from Lehky and Sereno12). c Frontal eye field (FEF) data for stimulus shape. N= 72 neurons with n=
8 stimuli per neuron (Data from Peng et al.39). d AIT data for stimulus location. N= 83 neurons with n= 8 stimuli per neuron (Data from Lehky et al.40 and
Sereno and Lehky11). e LIP data for stimulus location. N= 65 neurons with n= 8 stimuli per neuron (Data from Lehky et al.40 and Sereno and Lehky11). f FEF
data for stimulus location N= 62 neurons with n= 8 stimuli per neuron (Previously unpublished data). Gray error bars represent standard deviation.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01572-2 ARTICLE

COMMUNICATIONS BIOLOGY |            (2021) 4:50 | https://doi.org/10.1038/s42003-020-01572-2 |www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


An example configuration of the model is shown in Fig. 7a.
The black circles show Gaussian receptive fields (drawn at the
level of σ in Eq. (2)), while the blue dots indicate stimuli. For this
example the RF diameter was σ= 2 and the spacing between RF
centers was η= 1 (both in arbitrary units), while the number of
stimuli was n= 200. The full set of model parameters are listed in
the caption for Fig. 7a. The population response spectrum
resulting from this model is shown in Fig. 7b and has high
pseudosparseness= 0.737.

Pseudosparseness is sensitive to parameters that change the
statistical heterogeneity of neural response across a population,
while not being sensitive to parameters that do not change
heterogeneity. Pseudosparseness is sensitive to the response gain
G(μG, σG) and offset level O(μO, σO), the dispersion of receptive
fields γ (the diversity of receptive fields tunings in the feature
space), and the dispersion of the stimulus set ϕ (the diversity of
the stimulus set in the feature space). On the other hand,
pseudosparseness is not sensitive to the number of stimuli in the
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Fig. 7 Model for generating various level of pseudosparseness in a population of receptive fields activated by random stimuli. Top row: high
pseudosparseness conditions. a Hexagonal grid of overlapping receptive fields in a 2D feature space (e.g., position, shape, etc.). Each receptive field has a
Gaussian tuning curve in the feature space described in Eq. (2), with a small green dot indicating receptive field center and circle indicating receptive field
drawn at space constant σ= 2 (in arbitrary units). Receptive spacing is η= 1.0 and receptive field dispersion (size of circular boundary of green dots) is γ=
10.0. Additional parameter values are gain mean μG= 1.0, gain standard deviation σG= 0.25, offset mean μO= 0.25, and offset standard deviation σO=
0.25. Blue dots indicate a random set of stimuli. Stimulus set dispersion (size of circular boundary of blue dots) is ϕ= 6. b Resulting response spectrum,
showing high level of pseudosparseness= 0.737. Second and third rows: examples of two conditions producing lower pseudosparseness, namely, reducing
the response offset level and increasing the stimulus set dispersion. These conditions make population responses less heterogeneous.
c Receptive field mosaic with offset standard deviation reduced to σO= 0.0, indicated by receptive field gray levels being white. d Resulting response
spectrum, showing a lower pseudosparseness compared to when response offset level is higher. e Receptive field mosaic with stimulus set dispersion
increased to ϕ= 10, in addition to response offset again set to zero. f Increasing the stimulus set dispersion leads to further decrease in pseudosparseness.
Gray error bars represent standard deviation.
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stimulus set n, receptive field diameter σ, and receptive field
spacing η.

Among parameters for receptive field response, the key variable
is the standard deviation σO of the response offsets (i.e., standard
deviation of spontaneous activities or baseline activities) across
the population. Increasing σO leads to an increase in pseudos-
parseness. On the other hand, changing the mean μO of the offsets
across the population does not make a large difference. Regardless
of whether mean offset is high or low, the pseudosparseness is
about the same.

With respect to response gain across the receptive population,
the mean gain μG is important as it modulates the effect of the
offset downward, so that increasing μG causes the pseudosparse-
ness to decrease. Increasing μG decreases the effectiveness of the
offset standard deviation σO through the relationship σO/μG (the
coefficient of variation of σO relative to μG). Increasing μG
produces a higher base of activity, against which offsets are
relatively smaller. On the other hand, the standard deviation of
the gain σG is not a major variable.

As an example, decreasing the offset standard deviation (going
from σO= 0.25 to σO= 0.0, holding all else constant) lowers
pseudosparseness from 0.737 to 0.328. This is seen upon
comparing the response spectrum in Fig. 7b to d. Decreasing
standard deviations of offsets (baseline activities) leads to
decreased heterogeneity across the neural encoding population,
reducing the tendency of neurons to have mean responses over all
stimuli that are systematically higher or systematically lower than
for other neurons. This produces lower pseudosparseness.

Pseudosparseness also decreases as stimulus set dispersion
becomes greater relative to the receptive field dispersion. Stimulus
set dispersion is the diversity and richness contained within the
stimulus set, the breadth of the feature space being covered.
When stimulus set dispersion is relatively small (ϕ= 6, Fig. 7c),
the circle enclosing the stimulus set (large blue dots) is smaller
than the circle enclosing the receptive field centers (small green
dots). Under this situation, receptive fields beyond the stimulus
set field are inadequately stimulated, leading to increased
heterogeneity in the responses across the neural population and
consequent high pseudosparseness. When stimulus set dispersion
is increased to better match the receptive field dispersion (ϕ= 10,
Fig. 7e), there is less heterogeneity across the neural population
responses, leading to lower pseudosparseness (Fig. 7f). As an
alternative to increased stimulus set dispersion, decreased
receptive field dispersion relative to stimulus set dispersion in a
cortical area could also lead to decreased pseudosparseness.

Possibly an effect of relatively small stimulus set dispersion is
seen in the shape data in Fig. 6 (AIT, LIP, and FEF, left column).
These data had a small stimulus set (eight stimuli) leading to
small stimulus dispersions, and predictions of higher pseudos-
parseness values under this model.

In summary, large statistical heterogeneity across population
responses in the model (i.e., high response offsets, small stimulus
dispersion, and high receptive field dispersion, Fig. 7a) produces a
population exhibiting high pseudosparseness under well-defined
conditions. Such high pseudosparseness is comparable to the high
pseudosparseness demonstrated in the neurophysiological data.

Discussion
Previous literature in visual neurophysiology reports high spar-
seness/efficient coding in nonhuman primate cortical recordings.
We show that pseudosparseness, or correlation between popula-
tion responses to different stimuli, can also result in measures of
artifactually high sparseness. We show that there are consistently
high levels of pseudosparseness across visually responsive cortical
regions from striate to frontal cortex, using different stimulus

classes (e.g., synthetic vs. natural stimuli, or shape vs. location), as
well as for single-electrode and multielectrode data. Such high
pseudosparseness suggests what has been reported as high spar-
seness in the previous literature may in some cases be high
pseudosparseness. These findings necessitate a closer examination
and reconsideration of the prior literature on sparse coding, as
well as reflection on to what extent authentic sparseness provides
a useful framework for understanding neural coding in cortex.
There are limitations and trade-offs to sparse coding as an
organizational principle for neural coding42 allowing room for
alternatives to be considered, including those not based on
Shannon information theory, such as algorithmic information
(Kolmogorov complexity)43.

When characterizing population statistics (such as sparseness
and pseudosparseness), a persistent concern in the field has been
the effect of using single-electrode vs. multielectrode recording
techniques. When a population is synthetized sequentially over
several single-electrode recording sessions, it is possible that
changes in general arousal or attention during different sessions
leads to inhomogeneities in the population compared to when the
population is recorded in parallel using multielectrodes. However,
upon examining this issue, we found virtually no difference
between sparseness recorded with single-electrodes compared to
multielectrodes and a small decrease (one standard deviation) in
pseudosparseness recorded with single-electrodes.

Our finding that response characteristics remain consistent
across sessions are compatible with observations that properties
of identified individual neurons in monkey inferotemporal
cortex remain stable, when chronically recorded for weeks or
months44. We believe that the effect of using single-electrodes
vs. multielectrodes depends on the interneuronal correlations
involved in the data analysis. When no correlations are
involved, which is a first-order analysis of the population (as in
sparseness), single-electrode and multielectrode data match.
When correlations between responses occur in the analysis (a
second-order or higher-order analysis of the population), then
single electrodes should show lower values of a population
variable relative to multielectrodes. If the analysis involves
correlations with respect to mean responses across a population
(as opposed to trial-to-trial correlations), then the effects of
using single electrodes may be modest, as is the case for
pseudosparseness. If trial-to-trial correlations across popula-
tions are needed for analysis, then multielectrode techniques
are obviously essential because in such cases comparisons must
be carried out simultaneously.

Using the same V1 neural population, we show that the
response spectra to synthetic stimuli (e.g., gratings) and natural
stimuli are almost identical (Fig. 2). Response spectra were
examined not only by measuring the pseudosparseness values for
each spectrum, but also by calculating the correlation coefficient
between population responses for the two stimulus sets. The close
similarity of responses raises the possibility that pseudosparse-
ness, in this case, may reflect some low-level biophysical char-
acteristic across the population. In particular, response offset
(essentially spontaneous or baseline activity), which is an
important factor in the pseudosparseness model, may be a fixed
biophysical characteristic for individual neurons in the popula-
tion (although variable for different neurons across the popula-
tion), thus leading to similar profiles for different stimulus sets.

High levels of cortical pseudosparseness can mimic sparseness.
We distinguish here between classical, authentic sparseness in
neural population representations (Fig. 1, left column) and what
we call pseudosparseness (Fig. 1, right column), which can mimic
certain statistical properties of authentic sparseness. With
authentic sparseness, the population responses for different sti-
muli are uncorrelated, whereas with pseudosparseness the
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population responses are correlated. Pseudosparseness is defined
as the mean correlation between population responses to different
stimuli.

We suggest that the difference between pseudosparseness and
authentic sparseness may be understood when considering the
degree of statistical heterogeneity amongst responses across a
population. With authentic sparseness, the average response
across the stimulus set for each neuron is roughly the same
across the population. This can be seen in mean responses for
different neurons in the example shown in Fig. 1b, where the
curve is flat. With authentic sparseness, the response hetero-
geneity across the population is low. On the other hand, when
pseudosparseness is large, individual neurons tend to have
responses that are either consistently high or consistently low
for all stimuli, relative to those of other neurons. This can be
seen in responses in the example shown in Fig. 1e. With high
pseudosparseness, in other words, the response heterogeneity
across the population is high.

In 12 neurophysiological data sets covering different visually
responsive cortical areas in macaque monkeys, we found con-
sistently high levels of pseudosparseness, which we would attri-
bute to heterogeneous responses across the population. In most of
these data sets, a high sparseness measure is accompanied by a
high pseudosparseness measure, leading to the possibility that
what is being reported as high sparseness may actually be
pseudosparseness.

In some cases within the literature, responses of a neuron are
normalized by dividing them by their mean response or alter-
natively subtracting the mean (and possibly dividing by the
standard deviation). While this normalization can be useful for
identifying which are the most effective stimuli for individual
neurons, having a different normalization factor for each neuron
disrupts population correlations leading to pseudosparseness
values artifactually close to zero.

High pseudosparseness reduces encoded information. Higher
pseudosparseness means that a neural population is transmitting
less Shannon information about different stimuli (holding other
aspects constant when calculating information, such as the sti-
mulus set statistics, discretization of the neural responses, and so
forth as discussed by Richmond and Optican45). A consequence
of the high pseudosparseness observed in visual cortical data is
that neural populations are encoding substantially less informa-
tion than would be expected under sparse coding. By definition,
high pseudosparseness means high correlation of responses across
the population for different stimuli. When responses are highly
correlated, information decreases. For example, if the population
responses for all stimuli are perfectly correlated (as in Fig. 1d–f,
pseudosparseness= 1.0), then the population responses are
identical regardless of the stimuli, and Shannon information
is zero.

Interestingly, the values of AIT and LIP pseudosparseness
indices reverse for shape and space. For shape stimuli, the
pseudosparseness index is lower in AIT than LIP (Fig. 6a, b). For
location stimuli, the pseudosparseness index is lower in LIP than
AIT (Fig. 6d, e). As indicated by the pseudosparseness index, AIT
transmits more information about shape stimuli than LIP, while
LIP transmits more location information than AIT.

We created a neural model to examine which parameters are
important for generating pseudosparseness. It consists of a
mosaic of neurons with Gaussian receptive fields (with the
receptive fields located in a feature space and not necessarily in
physical location space) and with a random additive response
offset (spontaneous or baseline activity) for each neuron (Fig. 7,
first row). In our model, the random response offsets are
important for creating response heterogeneity across the neural
population, leading to high pseudosparseness. Another factor

affecting response heterogeneity and leading to high pseudos-
parseness is a stimulus set that poorly covers portions of the
feature space defined by the encoding neural population (Fig. 7,
second row relative to third row). When some areas of the feature
space are well covered and others are not (small stimulus set or
high receptive field dispersion), that increases heterogeneity in
responses across a population as a whole.

In conclusion, given the observation of consistently high values
of pseudosparseness in the neurophysiological data, prior reports
of sparse coding need be reconsidered, and serious reflection
should be given to the degree to which authentic sparseness
provides a useful framework for understanding neural coding in
cortex.

Methods
Monkey visual cortex data sets. We reanalyzed a number of previously published
neurophysiological data sets from different regions of visually responsive cortex in
macaque monkeys. Animals’ care was in accordance with institutional guidelines,
as indicated in the references for the various data sets. Data from V1 and V2 were
collected from anesthetized preparations, while other data sets used awake,
behaving animals. All data were recorded extracellularly. Single-electrode data were
sorted to identify single neurons, while multielectrode data (both Utah array and
tetrode) consisted of both well-isolated single units and small clusters of multiunit
activity. Each response spectrum was almost always determined from data from a
single monkey. In a few cases, data were pooled from two monkeys to form a single
spectrum, as noted in the “Results” sections. Collectively, we present data from 11
monkeys.

Characteristics of the data sets are summarized below for each cortical area.
Further details can be found in their respected published references.

V1 a. These V1 data (plotted in Fig. 2a–d) were recorded using a Utah multi-
electrode array with a 10 × 10 array of microelectrodes and 400 μm spacing. Cells
were recorded during ten recording sessions taken from three anesthetized mon-
keys. The population sizes in the sessions were N= [26 37 34 28 44 16 36 66 29 76]
neurons. For data analysis, we selected two sessions from two monkeys, session 5
(N= 44) and session 8 (N= 66). Units consist of well-isolated single neurons, as
well as small multiunit clusters. The stimulus set consisted of 416 gratings and 540
natural images that were flashed during presentation.

To compare multielectrode and single-electrode population statistics
(sparseness and pseudosparseness), single-electrode population data were created
by selecting one neuron randomly from each recording session to create a
sequential population with N= 10 neurons, as described in “Comparing
population statistics using single-electrode and multielectrode data” in the
“Methods” section and “Pseudosparseness in the monkey visual cortex” in the
“Results” section.

These data were collected in the laboratory of Adam Kohn at the Albert
Einstein College of Medicine and downloaded from http://crcns.org/data-sets/vc/
pvc-8 (ref. 30). They were originally published by Coen-Cagli, Kohn, and
Schwartz29.

V1 b. The data (plotted in Fig. 3c) consists of N= 24 neurons recorded with single
electrodes from an anesthetized monkey. The cells were stimulated by a set of
157 synthetic stimulus patterns consisting of 78 random textures and 79 shaded
paraboloid figures. These V1 cells were complex cells. They were originally pub-
lished by Lehky, Sejnowski, and Desimone14,31.

V2. These V2 multielectrode data (plotted in Fig. 5a) consists of a session with N=
37 neurons recorded using a set of tetrodes from an anesthetized monkey. Units
consisted of both well-isolated single units and multiunit activity. The stimuli were
oriented gratings.

The data were collected in the laboratory of Adam Kohn at the Albert Einstein
College of Medicine and downloaded from http://crcns.org/data-sets/vc/v1v2-1
(ref. 34). They were originally published by Zandvakili and Kohn46, as well as
Semedo et al.33.

MT. These data (plotted in Fig. 5b) contain N= 45 neurons collected from two
monkeys using single electrodes. The stimuli were naturalistic videos, which
contained full-screen natural movies that were motion enhanced with an overlay of
textured three-dimensional moving objects. Simulated saccadic eye movements
were introduced by cutting the movies into segments and shuffling their order,
similar to the sparse coding study of Vinje and Gallant10. This manipulation was
intended to mimic free viewing of stimuli. The videos were projected at 83 Hz
(12.0 ms per frame).

Out of the video frames, 200 snippets were used to create 200 stimuli for each
cell. Each snippet was spaced 100 frames (1.2 s) along the video and had a duration
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of ten frames (120 ms). Spike count over the 120 ms stimulus duration defined the
stimulus response.

The data were collected in the laboratory of Jack Gallant at the University of
California Berkeley and downloaded from http://crcns.org/data-sets/vc/mt-2
(ref. 35). The data were originally published in Nishimoto and Gallant36.

Perirhinal. These data (plotted in Fig. 5c) contains N= 92 neurons collected using
single electrodes. The stimuli consisted of 110 object images, both natural and
man-made objects, against a neutral background. The data were originally pub-
lished by Lehky and Tanaka37.

Anterior inferotemporal cortex a. These single-electrode recordings (plotted in
Fig. 5d) contain data for N= 122 neurons. This stimulus set was identical to that
used in the Prh data (data set 5), with 110 object images. The data were originally
published by Lehky and Tanaka37.

Anterior inferotemporal cortex b (shape). The data here (plotted in Fig. 6a) consists
of N= 85 neurons obtained through single-electrode recording. The stimulus set
had eight shapes that were simple geometric shapes. The data were originally
published by Lehky and Sereno12.

Anterior inferotemporal cortex c (location). These data (plotted in Fig. 6d) consists
of N= 83 neurons using single-electrode recording. The stimulus set consisted of
eight retinotopic locations across the visual field, allowing construction of a
population response to different locations. The shape stimulus was the most
responsive shape for each neuron in the population. The data were originally
published by Lehky et al.40 and Sereno and Lehky11.

Lateral intraparietal cortex a (shape). This single-electrode data set (plotted in
Fig. 6b) contains N= 53 neurons. The stimulus set consisted of eight shapes that
were simple geometric shapes, the same shapes used in AIT (data set 7). The data
were originally published by Sereno and Amador38 and Lehky and Sereno12.

Lateral intraparietal cortex b (location). This data set (plotted in Fig. 6e) consists of
N= 83 neurons obtained through single-electrode recording. The stimulus set
consisted of eight retinotopic locations across the visual field, allowing construction
of a population response to different locations. The shape stimulus was the most
responsive shape for each neuron in the population. The data were originally
published by Sereno and Amador38 and Sereno and Lehky11, and follows the same
procedures as used in AIT (data set 8).

Frontal eye field a (shape). This data set (plotted in Fig. 6c) consists of N= 72
neurons obtained through single-electrode recording. The stimulus set had eight
shapes that were simple geometric patterns, the same stimuli previously used in
AIT and LIP by Sereno and Amador38, and Lehky and Sereno12 (data sets 7 and 9).
The data were originally published by Peng, Sereno, Silva, Lehky, and Sereno39.

Frontal eye field b (location). These data (plotted in Fig. 6f) are an unpublished part
of the Peng et al.39 data set, now dealing with stimulus location rather than stimulus
shape. It comprises 62 neurons stimulated by a set of eight location stimuli (stimuli
placed at different locations of the visual field), collected using single-electrode
recording. The procedures for these FEF location data are analogous to those for the
previous AIT location data (Lehky et al.40, and Sereno and Lehky11) and LIP location
data (Sereno and Amador38, and Sereno and Lehky11; data sets 8 and 10).

Pseudosparseness index. Given a neural population, each stimulus produces a
particular population response vector. The pseudosparseness index is defined as the
mean Pearson correlation between the population responses for all pairs of stimuli.
The mean correlation is determined by transforming each correlation coefficient r
using Fisher’s z transform, z= atanh(r), calculating the mean of the z values, and
then using the inverse transform �r ¼ tanh �zð Þ47. Fisher’s z transform serves to
normalize the sampling of correlation coefficients, making the estimate of mean
correlation less affected by distribution skew.

Comparing population statistics using single-electrode and multielectrode
data. We had V1 data available from a Utah multielectrode array, described in
“Monkey visual cortex data sets” of the “Methods” section, data set 1. These data
included ten recording sessions using the array, with all sessions using identical
recording methods and the same stimulus set.

We wished to compare multielectrode and single-electrode population statistics
(both sparseness and pseudosparseness) from these data. For the multielectrode
data set, we selected one recording session (session 8) with N= 66 neurons. Single-
electrode population data were created by selecting one random neuron from each
of the ten recording sessions to create a single sequential population with N= 10
neurons. The N= 10 single-electrode population was repeated 10,000 times with
random selections of neurons across the recording sessions for each repetition.

Because population statistics might be sensitive to population size, we randomly
subsampled the N= 66 neurons from the multielectrode set into subpopulations of

sizes N= [5 10 20 30 40 50 60]. Neurons in subpopulations were selected through
random permutation (Matlab command randperm(N,k), with N= 66 and
k= subpopulation size). Each subpopulation size was repeated 10,000 times. We
generated the entire curves of population statistics as a function of population size
for completeness, although the critical comparison here is that between the N= 10
single-electrode population and the N= 10 multielectrode population.

Statistics and reproducibility. This study involves a reanalysis of previously
published data collected by different investigators from different visually responsive
cortical areas of macaque monkeys. A total of 11 monkeys were used, with data
from 1 or 2 monkeys for each cortical data set. Although details differ for each data
set, each contained a sample of several dozen neurons, with responses for each
neuron repeated at least five times and more typically ten times. The data analysis
centered around two parameters, sparseness and pseudosparseness, which are
explained in the “Introduction” and “Methods” sections. These parameters were
quantified using standard measures, such as mean, median, and the Pearson cor-
relation coefficient. Variation is generally given as standard deviation although
standard error is occasionally used, as indicated in the text. Two-sided values of
significance are given, and confidence levels are at the 95% level. Statistical powers
of comparisons are provided. In some cases, bootstrap resampling was used to
determine statistics, as described in the appropriate sections.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data associated with Figs. 2, 3a, 4, and 5a, b are available from crcns.org (Collaborative
Research in Computational Neuroscience), as detailed in the “Monkey visual cortex data
set” in the “Methods” section. Data associated with Figs. 3b, 5c, d, and 6 are available via
the corresponding author upon reasonable request.

Code availability
Matlab code for the pseudosparseness function can be downloaded at https://github.com/
slehky/pseudosparseness-commsbio.
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