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Abstract 

Neurons selective for faces exist in humans and monkeys. However, 

characteristics of face cell receptive fields are poorly understood. In this theoretical study 

we explore the effects of complexity, defined as algorithmic information (Kolmogorov 

complexity) and logical depth, on possible ways that face cells may be organized. We use 

tensor decompositions to decompose faces into a set of components, called tensorfaces, 

and their associated weights, which can be interpreted as model face cells and their firing 

rates. These tensorfaces form a high-dimensional representation space in which each 

tensorface forms an axis of the space. A distinctive feature of the decomposition 

algorithm is the ability to specify tensorface complexity. We found low-complexity 

tensorfaces have blob-like appearances crudely approximating faces while high-

complexity tensorfaces appear clearly face-like. Low-complexity tensorfaces require a 

larger population to reach a criterion face reconstruction error than medium- or high-

complexity tensorfaces, and thus are inefficient by that criterion. On the other hand, low-

complexity tensorfaces generalize better when representing statistically novel faces, 

which are faces falling beyond the distribution of face description parameters found in 

the tensorface training set. The degree to which face representations are parts-based or 

global forms a continuum as a function of tensorface complexity, with low- and medium 

tensorfaces being more parts-based. Given the computational load imposed in creating 

high-complexity face cells (in the form of algorithmic information and logical depth), and 

in the absence of a compelling advantage to using high-complexity cells, we suggest face 

representations consist of a mixture of low- and medium-complexity face cells. 
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Introduction 

The ability to recognize individual faces and to interpret facial expressions is 

central to human social interactions, as well as the social interactions of some non-human 

primates (Leopold & Rhodes, 2010; Parr, 2011; Parr, Winslow, Hopkins, & de Waal, 

2000). Neurons whose responses are selective for faces have been demonstrated in 

humans and non-human primates, both neurophysiologically and through fMRI 

(Duchaine & Yovel, 2015; Freiwald, Duchaine, & Yovel, 2016; Haxby, Hoffman, & 

Gobbini, 2000; Kanwisher & Yovel, 2006; Nestor, Plaut, & Behrmann, 2016; Parr, 

Hecht, Barks, Preuss, & Votaw, 2009; Tsao, 2014; Tsao & Livingstone, 2008). How 

those neurons are used to represent face is a matter of extensive research.  

Neurophysiological evidence indicates that faces can be encoded using a neural 

population code, with each face represented by a point within a high-dimensional face 

response space (Chang & Tsao, 2017; Eifuku, De Souza, Tamura, Nishijo, & Ono, 2004; 

Rolls & Tovée, 1995; Young & Yamane, 1992). Each neuron forms an axis of the neural 

face space. Neural responses within the high-dimensional response space can be 

visualized through dimensional reduction techniques such as multidimensional scaling 

(MDS) or principal components analysis (PCA). The dimensionality of face space has 

been estimated psychophysically to be on the order of 100 (Meytlis & Sirovich, 2007; 

Sirovich & Meytlis, 2009). Within an axis-based face space the average face may have 

special status as defining the origin of the face space coordinate system (Leopold, 

Bondar, & Giese, 2006; Leopold, O'Toole, Vetter, & Blanz, 2001; Rhodes & Jeffery, 

2006; Tsao & Freiwald, 2006; Wilson, Loffler, & Wilkinson, 2002), though this remains 

controversial.  
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The use of axis-based high-dimensional neural response spaces has become 

commonplace for interpreting neural data, not just for describing faces responses but also 

for describing neural responses to object stimuli in general. Those using an axis-based 

approach based to characterize neurophysiological object responses (non-face) include 

MDS studies (Kayaert, Biederman, & Vogels, 2005; Kiani, Esteky, Mirpour, & Tanaka, 

2007; Lehky & Sereno, 2007; Murata, Gallese, Luppino, Kaseda, & Sakata, 2000; Op de 

Beeck, Wagemans, & Vogels, 2001; Romero, Van Dromme, & Janssen, 2013; Sereno & 

Lehky, 2018; Sereno, Sereno, & Lehky, 2014), as well as those based on PCA (Baldassi 

et al., 2013; Chang & Tsao, 2017).  This axis-based approach can be extended to 

interpreting fMRI data for objects, in this case using each voxel as an axis for the high-

dimensional response space (Bracci & Op de Beeck, 2016; Connolly et al., 2012; Kravitz, 

Peng, & Baker, 2011; Kriegeskorte et al., 2008). 

There are two perspectives on the development of face processing circuitry in 

temporal cortex. The first is that there are face-specific neural processes that are hard-

wired (domain specificity) (Kanwisher, 2000; McKone, Kanwisher, & Duchaine, 2007; 

Tsao & Livingstone, 2008; Yovel & Kanwisher, 2004). The second is that temporal 

cortex can also acquire processing for different classes of non-face stimuli through 

experience (expertise) (Cowell & Cottrell, 2013; Gauthier, Behrmann, & Tarr, 1999; 

Gauthier, Skudlarski, Gore, & Anderson, 2000; Gauthier & Tarr, 1997; Tong, Joyce, & 

Cottrell, 2008; P. Wang, Gauthier, & Cottrell, 2016). For the purposes of this study we 

remain agnostic between these possibilities, focusing on the face representations 

themselves and not their development. 
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A neural face space is defined by the properties of the individual neurons that 

constitute the axes of the space (plus possible interactions within the face cell population 

if the face space is nonlinear). Therefore, a central task in characterizing face space is to 

characterize those individual neurons. As with high-level representations of objects in 

general, the complexity of face representations at the population level reflects the 

complexity in the organization of individual face cell receptive fields. Given the 

complexity of face cell organization, a fruitful approach is to constrain the possibilities of 

what aspects of facial features are important to face cells. An interesting example of this 

sort of analysis is given by Freiwald, Tsao, and Livingstone (2009) for monkey 

inferotemporal cortex, based on the geometry of facial features and parts/whole 

organization using simple cartoon face stimuli. In contrast, we have hesitations 

concerning the conclusions of Chang and Tsao (2017) that face space corresponds to one 

unique linear space that they have discovered. We believe that other linear face spaces 

are also consistent with their data under their mathematical analysis methods, as we will 

consider in the Discussion section.  

Here we suggest that “image complexity” may be a novel way to characterize face 

representations, where complexity is given a well-defined mathematical definition. We 

approach the issue of face complexity theoretically by using a mathematical technique 

based on tensor decomposition (Bro, 1997; Cichocki et al., 2015; Favier & de Almeida, 

2014; Kolda & Bader, 2009; Rabanser, Shchur, & Günnemann, 2017; Sidiropoulos et al., 

2017), that allows us to vary the complexity of the face cells that constitute the encoding 

dimensions. Complexity as used here is defined as Kolmogorov complexity, also known 

as algorithmic information (Adriaans, 2019; Cover & Thomas, 2006; Grünwald & 



 6 

Vitányi, 2008a, 2008b; Li & Vitányi, 2008), as well as another complexity measure 

called logical depth (Bennett, 1988, 1994; Zenil, Delahaye, & Gaucherel, 2012). 

Comparing properties of face representations with different complexities is the central 

focus of this study.  

Tensor analysis decomposes faces into a set of components, called tensorfaces. 

Under the algorithm used here, the original faces can be reconstructed by a weighted 

linear sum of the tensorfaces (under other tensor algorithms the mixing can be 

multilinear). A set of components and their associated weights can be thought of as 

model face cells and their firing rates. This tensor decomposition is analogous to 

reconstructing faces using a weighted linear sum of components derived from principal 

components analysis (PCA) (Turk & Pentland, 1991), or a weighted linear sum of 

components derived from independent components analysis (ICA) (Bartlett, Movellan, & 

Sejnowski, 2002; Bartlett & Sejnowski, 1997), or a weighted linear sum of components 

derived from nonnegative matrix factorization (NMF) (Y. Wang, Jia, Hu, & Turk, 2005), 

among other possibilities. These decomposition algorithms differ based on what 

constraint is applied to the decomposition. PCA produces components subject to the 

constraint that they are orthogonal, ICA that they are statistically independent, and NMF 

that they are non-negative. Another member of this genre of decomposing faces into 

linear components is active appearance modeling (AAM) (Cootes, Edwards, & Taylor, 

2001; G. J. Edwards, Cootes, & Taylor, 1998), as used by Chang and Tsao (2017). AAM 

similar to PCA except that fiducial markers are placed on the face images by hand to help 

with aligning features during decomposition (and thus this is not an automatic algorithm). 

In this study the constraint we place on the face decomposition is that the components 
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have fixed complexity.  

Tensor decomposition is not a single algorithm but a category of algorithms. The 

term “tensorface” was originated by Vasilescu and Terzopoulos (2002) for a particular 

nonlinear (multilinear) tensorface decomposition algorithm (see also Vasilescu & 

Terzopoulos, 2002; Vasilescu & Terzopoulos, 2003, 2005, 2011). We use a different 

tensor algorithm to linearly decompose faces (Phan, Cichocki, Tichavský, Zdunek, & 

Lehky, 2013), one that is, as mentioned, constrained to produce tensorfaces with 

specified image complexity. Each tensorface can be visualized as a matrix of pixels, and 

the rank of that matrix serves as the direct proxy of image complexity when running the 

algorithm. (Rank is defined as the maximum number of linearly independent columns or 

rows in a matrix.) Matrix rank is the input parameter specified for the algorithm to 

specify the face complexity we want, while Kolmogorov complexity and logical depth 

are calculated from the output tensorfaces after the algorithm is run. 

We are not advocating the algorithm used here as a specific model of biological 

face cells and we are not interested in creating a canonical face space (as we believe such 

an effort is premature). Rather, we are interested in exploring the concept of 

“complexity” in face representations in general using this algorithm as an example, with 

hopes that this concept will prove useful in future investigations of biological face 

processing. We create tensorfaces with specified complexity by adding a rank constraint 

to a tensor decomposition algorithm.  Creating other face representations with specified 

complexity could also be done by adding rank constraints to other decomposition 

algorithms not based on tensor algorithms.  An example of this is PCA decomposition 

with a rank constraint added (Yu, 2016). We confine ourselves here to issues of basic 
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face representation and do not attempt to categorize different views of individual faces, as 

we are not creating a full face recognition model. 

Methods 

i. Face stimulus set 

Synthetic colored faces were generated using FaceGen software (Singular 

Inversions, Inc.; facegen.com). Some details of the FaceGen algorithms are discussed in 

Blanz and Vetter (1999). The face set included equal numbers of males and females, and 

equal numbers from the four racial groups provided by the software: African, East Asian, 

European, and South Asian. As we included color in our consideration of facial 

representations, we wanted to have different skin tones in the face sample. Example faces 

are shown in Figure 1. Within each racial group, we generated faces with random shape, 

color, and texture parameters using the “Generate” button in the software control panel. 

This automatic, random generation of faces sometimes led to unnatural looking faces, 

which either were rejected from inclusion in the face set or had their parameters manually 

tweaked. Faces had zero rotation. The illumination angle was 0o azimuth and 0o 

elevation. Tensor decomposition was carried out on a sample set usually consisting of 

128 faces (examples shown in Figure 2a). The resulting tensorfaces were tested by using 

them to reconstruct a different set of faces, a test set containing 40 faces (Figure 2b).  

 For this initial study of tensorface complexity we have kept the face sample set 

simple, all front facing with identical illumination. The multiway nature of tensor 

decompositions would allow inclusion of additional image parameters as additional 

dimensions to the input tensor containing the sample face set. For example, 

representations of rotated faces (changes in viewpoint) are an important aspect of face 
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identification (Fang, Murray, & He, 2007; Freiwald & Tsao, 2010; Jiang, Blanz, & 

O'Toole, 2006; Natu et al., 2010; Noudoost & Esteky, 2013; Perrett et al., 1991; Perrett et 

al., 1985; Ramírez, Cichy, Allefeld, & Haynes, 2014). Face rotation in depth (azimuth) 

could be added as a fifth dimension to the current four-dimensional input tensor (x spatial 

dimensions, y spatial dimension, color, and different individuals), and analogously for 

additional image parameters. 

ii. Tensor decomposition algorithm background 

 We computed face components using tensor methods rather than the matrix 

methods used in PCA, ICA, and NMF. PCA and other matrix techniques can only deal 

with 2D data. That means each face image must be unfolded or vectorized into one long 

1D vector. Then the vectors for the individual faces are placed together to form the 

columns of a 2D matrix, which serves as the input to PCA (Figure 3a). In contrast, tensor 

methods can be applied to data with an arbitrarily large number of parameter dimensions. 

Therefore, images do not need to be vectorized, and each pixel within the image retains 

its spatial context during the decomposition process (Figure 3b). Here we did tensor 

decompositions of 4D face data structures, which included two spatial dimensions for 

each face, color as the third dimension, and different individuals as the fourth dimension. 

While PCA and other matrix methods use linear algebra, tensor methods use multilinear 

algebra that allows consideration of multiple parameter dimensions concurrently. While 

we used a multilinear algorithm to decompose faces into a set of components and 

weights, the faces were reconstructed linearly as the weighted sum of the components. 

iii. Tensor decomposition algorithm 

Matlab code and example face files are available at 
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https://github.com/slehky/tensorfaces-neco .  

A. MATRIX OPERATORS 

The tensor decomposition algorithm used here uses the Kronecker, Khatri-Rao 

and Hadamard products between two matrices as well as Hadamard division. The 

properties and applications of those matrix operators have been reviewed by Van Loan 

(2000) as well as Liu and Trenkler (2008) and are included in the Matlab toolbox 

software of Bader, Kolda, and others (2017) and Phan (2018). Here we briefly these 

operators before describing the algorithm. 

a. The Kronecker product ⊗  of the matrix 		 A∈Mm,n  and the matrix 		 B∈Mp ,q  is defined 

as: 

 

		 

A⊗B =

a11B … a1nB
! !
am1B … amnB

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

                                             

(1) 

For example, 

	

a b c
d e f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⊗

g h i
j k l

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

ag ah ai bg bh bi cg ch ci
aj ak al bj bk bl cj ck cl
dg dh di eg eh ei fg fh fi
dj dk dl ej ek el fj fk fl

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (2)  

The Kronecker product is the generalization to matrices of the vector outer product. It is 

sometimes called the tensor product. 

b. The Khatri-Rao product  ⊙  of the matrix 		 A∈Mm,n  and the matrix 		 B∈Mp ,n  is defined 

as the Kronecker product between corresponding columns of the two matrices: 

 		 A⊙B = a1⊗b1 , a2⊗b2 , … an ⊗bn⎡⎣ ⎤⎦                               
 (3)                                    
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where 	an  and 	bn  are the nth column vectors. The Khatri-Rao product is only defined if 

the matrices have the same number of columns. For example, 

	 

a b c
d e f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⊙

g h i
j k l

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

ag bh ci
aj bk cj
dg eh fi
dj ek fl

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

                    

(4)                          

 

c. The Hadamard product  !  between two matrices 		 A∈Mm,n  and 		 B∈Mm,n  is defined as 

the element-wise multiplication between them: 

  
	 
A!B = A⎡⎣ ⎤⎦ij B⎡⎣ ⎤⎦ij                                            

(5)                                           

for all 		1≤ i ≤m , 		1≤ j ≤n . The Hadamard product is only defined if the two matrices 

have the same dimension. For example, 

 
	 

a b c
d e f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
!

g h i
j k l

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

ag bh ci
dj ek fl

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥                         

(6)   

Hadamard division  ⊘  is defined analogously as element-wise division between two 

matrices.  

B. THE MODEL 

 The tensor decomposition algorithm we use is described by Phan et al. (2013). 

We have not made any changes to it, but do present it in more detail here. The algorithm 

is a variant of the CANDECOMP/PARAFAC (CP) algorithm (Carroll & Chang, 1970; 

Harshman, 1970). It falls into the category of structured or constrained CP incorporating 

a PARALIND algorithm (Bro, Harshman, Sidiropoulos, & Lundy, 2009). Constrained CP 

algorithms have been reviewed by Favier and de Almeida (2014). Although this 

algorithm is derived from CP, it is not based on an outer product sum of rank-1 
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components as is done by CP. Rather, the decomposition is based on a Kronecker product 

between two tensors, namely a components tensor and a weights tensor. The structured 

CP algorithm used here can be viewed in some sense as intermediate between two 

commonly used tensor decomposition models, the conventional CP model (Carroll & 

Chang, 1970; Harshman, 1970) and the Tucker model (Tucker, 1966), and incorporates 

aspects of both. The reason for using a structured CP model in this study rather than 

either the conventional CP or Tucker models are briefly outlined in Phan et al. (2013). 

Consider a data tensor  Y  of size 		 I1 × I2 ×!× IN . Our aim is to represent this 

tensor by multiple basis components (tensorfaces) in which the components were 

specified to have various levels of complex structures. In our case we are dealing with a 

4-way tensor (		N = 4 ) with size 200 (pixels) ×  200 (pixels) ×  3 (color channels) ×  128 

(individuals), which represents 128 colored face images concatenated into a single data 

structure. All calculations are performed with the color channels converted from RGB to 

CIE 1976 L*A*B color space, which approximates human color vision more closely.  

The tensor decomposition algorithm we use factors the tensor  Y  into a sum of 

components (basis patterns) and mixing weights: 

		 
Y ≈ Xp ⊗Ap

p=1

P

∑                                                       (7) 

where ⊗  denotes the generalized Kronecker product, 	 
Xp  are components (tensorfaces in 

our case) and 	 
Ap  the associated coefficient tensors (weights), for 		 p=1,2,…,P  (	P

=number of patterns). Unlike matrix decompositions such as PCA, ICA, and NMF where 

the weight for each component must be a scalar, tensor decompositions can allow weights 
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to be a higher-order tensor, allowing multilinear mixing during reconstruction (Vasilescu 

& Terzopoulos, 2002). However in this model we arranged the algorithm such that the 

weights tensor is order-1 and rank-1, thereby making the weight for each component 

scalar and the mixing linear. The components tensor 	 
Xp  is a higher-rank tensor. 

Although the face reconstruction is linear here, the decomposition of the input face tensor 

 Y  itself into weights 	 
Ap and components 	 

Xp  
is multilinear. 

Various decomposition algorithms can be carried out subject to different constraints on 

	 
Xp , such as orthogonality (PCA), statistical independence (ICA), or non-negativity 

(NMF), as well as possible constraints on 	 
Ap  such as sparseness. Here the constraint was 

on the tensor rank of 	 
Xp , where we take rank to be a measure of the complexity of the 

tensorface patterns. As the number of components 	P  is limited, the decomposition will 

only be approximately equal to the original data  Y .  

 For our model, the weights 	 
Ap  are of size 		 Jp1 × Jp2 ×…× JpM , with their order 

(dimensionality)
 
given by 	M . Within the algorithm we defined 	 

Ap  to be order 		M =1 , 

and thus 	 
Ap  is represented by a 		n×1  vector, where 	n  is number of face images in the 

input set (typically n=128).  The patterns 	 
Xp  are of size 		 Kp1 ×Kp2 ×…×KpL , with their 

order
 
given by 	L . 	 

Xp  
are of order 		L=3, and form 		m×m×3  sized tensors where 	m  is 

the size of the input image in pixels, in our case always 200 pixels. 

	 
Ap  and 	 

Xp are rank-	
Sp  and rank-	

Rp  tensors, respectively. The rank of 	 
Ap is 

always 		Sp =1 . The rank of 	 
Xp  

is set over the range 		Rp =2  to 		Rp =32  for different runs 
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of the tensor decomposition algorithm. Examining the effects of changing 	
Rp  (changing 

the complexity of tensorfaces) is a central concern of this study. 

The subscript 	p  for different tensorface patterns is included for generality, but we 

hold both the order and the rank of both 	 
Ap  and 	 

Xp constant for all 	p . Notably the rank 

of 	 
Xp  

is constant for the entire population of tensorfaces during a single run. Although 

we had the option to set the rank of each tensorface individually, we do not do so here. 

In implementing the model, 	 
Ap  and 	 

Xp  can be expressed as sets of matrices 		 U(m)  

and 		 V(l )  through canonical polyadic decomposition (CPD) (Carroll & Chang, 1970; 

Harshman, 1970) of 	 
Ap and

 	 
Xp  

(Figure 4): 

		   Ap = I ×1 Up
(1) ×2 Up

(2)!×M Up
(M )

                                           
(8)

 

		   Xp = I ×1 Vp
(1) ×2 Vp

(2)!×L Vp
(L)

                                             
(9) 

where 	×n  is tensor matrix multiplication along the nth mode (dimension),  I  is a tensor 

with ones along the superdiagonal, the superscripts indicate the dimension number, and 

the subscripts the pattern number. The sizes of the matrices were 		  U(m)∈R Jpm
×Sp  and 

		  V(l )∈RKpl
×Rp .  For 	 

Ap , which has order 		Mp =1  and rank 		Sp =1 , 	 Um  reduces to a single 

128 ×  1 vector. For 	 
Xp , which has order 		Lp =3  and rank 	

Rp  as variably defined, there 

were three matrices in which the number of rows was set equal to image dimensions and 

the number of columns equal to tensorface rank. Assuming rank 		Rp =8  as an example, 

the sizes of the three matrices associated with each pattern were 200× 8, 200× 8, and 3×
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8. It is here that the rank constraint enters explicitly into the calculations. This model of 

 Y  is equivalent to a CP decomposition with total rank 
		
T = Rp

p=1

P

∑ Sp . 

The tensor decompositions in Eqs. (7)-(9) are particular cases of Kronecker tensor 

decomposition (KTD), and also constitute a generalized model of block term 

decomposition (BTD) (De Lathauwer, 2008a, 2008b; Sorber, Van Barel, & De 

Lathauwer, 2013). If all 	 
Ap  are of order-1, i.e., 		M =1 , as was the case here, then the 

above model is simplified into the rank-	 
Rp !  rank-1 BTD (Sorber et al., 2013). 

In order to derive the algorithm that updates the factor matrices of the basis 

patterns and the weight tensors, we rewrite the tensor decomposition in Eq. (7) with rank 

constraints in Eq. (8) and Eq. (9), in the form of the CP decomposition. 

Lemma 1.  The decomposition in Eqs. (7)-(9) is equivalent to a structured canonical 

polyadic decomposition:  

		   Y ≈ I ×1 W(1) ×2 W
(2)!×N W(N )                                    (10) 

where the factor matrices 		 W(n)  are given by 
 

 		  
W(n) =

!V(n)QX 				n=1,2,…,L
!U(n)QA 				n=L+1,…,N

⎧
⎨
⎪

⎩⎪                                          
(11) 

		  
!U(n) = U1

(n) ,U2
(n) ,…,UP

(n)⎡⎣ ⎤⎦                                                (12)
 

   		  
!V(n) = V1

(n) ,V2
(n) ,…,VP

(n)⎡⎣ ⎤⎦                                                 
(13)

			   QX = blkdiag IR1 ⊗1S1
T ,IR2 ⊗1S2

T ,…,IRP ⊗1SP
T( )                              

(14) 

			   QA = blkdiag 1R1
T ⊗ IS1 ,1R2

T ⊗ IS2 ,…,1RP
T ⊗ ISP( )                               (15) 
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In Eqs. (14) and (15), ⊗  is the Kronecker product, defined in Eq. (1),  I  is the tensor with 

ones along the superdiagonal, 	1  is a vector of ones, and 	T  is the matrix transpose 

operator. 

In this decomposition, due to properties of the Kronecker product each component 

(column) of 		 Up
(n)  was replicated 	

Sp  times in 		 W(n)  for 	n≤ L , and each component of 		 Vp
(n)  

was replicated 	
Rp  times in 		 W(n)  for 	n> L . Such behavior is related to the rank-overlap 

problem (the decomposition creates multiple identical components) which often exists in 

real-world signals such as chemical data, flow injection analysis (FIA) data (Bro, 1998; 

Bro et al., 2009), or spectral tensors of EEG signals (Phan et al., 2013). However, in our 

case this does not lead to the creation of multiple identical tensorfaces 	 
Xp  

because each 

	 
Xp  is the result of combining all factor matrices 		 Vp

(n) . 

The structured CPD in Lemma 1 is a particular case of parallel factor analysis 

(CANDECOMP/PARAFAC) (Carroll & Chang, 1970; Harshman, 1970) with linearly 

dependent loadings (PARALIND) (Bro et al., 2009) in which the dependency matrices 

(Bro et al., 2009) are fixed and given in Lemma 1. Discussions on the uniqueness of the 

CPD with linearly dependent loadings can be found in (Guo, Miron, Brie, & Stegeman, 

2012; Stegeman & Lam, 2012). 

C. ALGORITHM 

 We us an alternating least squares (ALS) algorithm to learn the approximate 

factorization of  Y  into 	 
Ap  and 	 

Xp . The ALS algorithm is applied to the structured CPD 

in Lemma 1 in order to iteratively update 		  !U(n)  and 		  !V(n) :   
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!U(n) ←GnQL

T QLΓnQL
T( )−1 , 							 n=1,2,…,S( )                                                                   

(16) 

		  
!V(n) ←GnQM

T QMΓnQM
T( )−1 , 					 n= S +1,2,…,N( )                                                             

(17) 

where 

		  Gn =Y(n) W(N ) ⊙…⊙W(n+1) ⊙W(n−1) ⊙…⊙W(1)( )                                                            
(18) 

		   Γn = W(1)TW(1)( )!…! W(n−1)TW(n−1)( )! W(n+1)TW(n+1)( )!…! W(N )TW(N )( )                 
(19) 

and  ⊙  and  !  denote the Khatri-Rao product (Eq. (3)) and Hadamard product (Eq. (5)) 

respectively.  

Updating 		  !U(n)  and 		  !V(n)  in turn allows updates of 	 
Ap  and 	 

Xp  through Eqs. (8)

and (9). ALS acts to iteratively adjust the factors 	 
Ap  and 	 

Xp  in Eq. (7) so as to minimize 

the Frobenius error between the original data tensor  Y  and the reconstructed data tensor 

	 Ŷ , 		 Error = Y − Ŷ
F

. 	 Ŷ  is calculated from the estimated 	 
Ap  and 	 

Xp  during each 

iteration. The ALS algorithm updates each parameter sequentially, in contrast to error 

minimization using a gradient descent algorithm, which updates all parameters 

simultaneously. The error minimization loop is begun by initializing 	 
Ap  and 	 

Xp  using 

the singular value decomposition (SVD) of  Y . SVD is performed on a matrix in which 

each column is formed by vectorizing a face image (creating a vector with 200 ×  200 ×  

3 pixels), with the number of columns equal to the number of images (128 images). The 

left SVD vector is saved to a tensor with image dimensions, then approximated by a low 

rank tensor using CANDECOMP/PARAFAC, and finally assigned as initialization of 	 
Xp

. 	 
Ap is initialized using the right SVD vector. 
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 Although we did not impose non-negativity constraints, they could be included 

using the iterative algorithm below (Cichocki, Zdunek, Phan, & Amari, 2009; Lantéri, 

Soummer, & Aime, 1999; Lee & Seung, 1999; Lin, 2007): 

 

		   

!U(n) = !U(n)
! GnQL

T( )⊘ !U(n)QLΓnQL
T( ) , 								 n=1,2,…,S( )

!V(n) = !V(n)
! GnQM

T( )⊘ !V(n)QMΓnQM
T( ) , 						 n= S +1,2,…,N( )                                           

(20)

                  

 

where  ⊘  denotes (element-wise) Hadamard division.  

 

iv. Reconstruction error 

We measure the error between original faces and faces reconstructed from a set of 

tensorface components. Error is calculated as the Frobenius norm (Euclidean matrix 

norm) of the pixel-wise difference between the original face and reconstructed face, 

divided by the Frobenius norm of the original face: 

		

Err =
aij − âij( )2

j=1

m

∑
i=1

n

∑

aij
2

j=1

m

∑
i=1

n

∑
                                                    

(21) 

 Reconstructions and reconstruction errors are meant to illustrate the amount of 

information contained in the tensorfaces and associated weights, and are not intended to 

imply that the brain reconstitutes face pixel maps somewhere along the visual pathways. 

v. Displaying tensorfaces 

The pixel values of the tensorfaces produced by the tensor decomposition 

algorithm generally extend beyond the range of values allowed by the L*a*b color space, 

as the decomposition was not constrained to fit requirements of the color space.  The L 

(luminance) channel allows values on the range 0–100, while the a (red-green opponent) 
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and b (blue-yellow opponent) channels both allow values on the range -100–100. For 

display purposes, each tensorface was individually normalized to fill out the allowable 

values of the color space. The L channel was separately normalized, while the a and b 

channels were jointly normalized so as not to affect the color balance between the two. 

After the L*a*b color space normalization, the tensorface was converted to RGB color 

space for display. 

vi. Kolmogorov complexity (algorithmic information) 

The Kolmogorov complexity of a pattern, or equivalently the algorithmic 

information it contains, is the length of the shortest algorithm required to reproduce it 

(Grünwald & Vitányi, 2008a, 2008b; Li & Vitányi, 2008). In other words, the complexity 

of a pattern is the size of the most compressed description of the pattern. The concept of 

Kolmogorov complexity was independently introduced by Solomonoff (1964), 

Kolmogorov (1965), and Chaitin (1969), and is sometimes known as Kolmogorov-

Chaitin-Solomonoff (KCS) complexity.  

To illustrate the difference between algorithmic information and Shannon 

information, consider a communications channel in which only two messages are 

possible, either Face A or Face B. Whenever one of those faces is transmitted, the 

Shannon information is one bit because there are only two possibilities. However, the 

algorithmic information transmitted is vastly higher because it requires many bits to form 

a complete description of the face. 

While the definition of Kolmogorov complexity is straightforward, actually 

determining its value is problematic as there is no systematic way to determine the most 

compact description of a pattern. In other words, Kolmogorov complexity is 
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uncomputable (no algorithm exists). Because Kolmogorov complexity is uncomputable, 

we use lossless compression algorithms to approximate an upper bound to complexity of 

the tensorfaces (Ruffini, 2017).  

Here we base our estimate of the Kolmogorov complexity of tensorfaces on the 

file size of the tensorface images after they underwent a lossless compression. That is 

done by saving a tensorface image in PNG image format and noting the number of bits in 

the saved file. The PNG image format uses an efficient, lossless compression algorithm 

called DEFLATE, which is based on the Lempel-Ziv algorithm (Lempel & Ziv, 1976; 

Ruffini, 2017) together with Huffman coding. To further compress the tensorface files 

beyond the standard PNG format, we use the program ImageOptim (imageoptim.com), 

which ran an additional set of compression algorithms, also based on DEFLATE, that are 

more efficient but too time consuming for ordinary use, combining the results of those 

compression algorithms. The algorithms included Zopfli, PGNOUT, OptiPGN, AdvPGN, 

and PGNCrush. Using ImageOptim reduces tensorface file sizes beyond the standard 

PNG compression by an amount depending on tensorface rank, ranging on average from 

19% for rank=2 tensorfaces to 9% for rank=32 tensorfaces. 

The number of bits in the compressed image was then normalized by the number 

of pixels in the image, giving an estimate of Kolmogorov complexity as bits/pixel for the 

compressed image. While all tensorface images had identical file sizes when 

uncompressed and initially had 24 bits/pixel, some tensorfaces were more compressible 

than others, reflecting image complexity. 

After setting the desired rank of the tensor decomposition, the face sample set was 

decomposed into 100 components and then the decomposition was replicated ten times to 
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produce a total of 1000 tensorfaces. Kolmogorov complexity was averaged over those 

1000 tensorfaces. The same set of tensorfaces was used in calculations of logical depth, 

power spectra, and globality described below. 

In this analysis the tensor decomposition algorithm provides us with model face 

receptive fields (tensorfaces). Such model receptive fields are presented as images of 

receptive fields, analogous to the way that V1 Gabor receptive fields are presented as 

images of the receptive fields. Having access to such receptive field images makes it 

feasible to employ the mathematical methods for evaluating algorithmic complexity. On 

the other hand, in an experimental neurophysiological situation, producing images of face 

cell receptive fields is problematic because of the intractability with finding optimal face 

stimuli given undefined spatial nonlinearities in the receptive fields. We will discuss 

nonlinearities in face cells further below.   

vii. Logical depth 

 Logical depth is another way to measure the complexity of tensorfaces. In the 

present context, logical depth is the duration of computational time required to restore an 

image back to its original state after it has been maximally compressed in a lossless 

manner. The concept of logical depth was originated by (Bennett, 1988, 1994) and has 

previously been applied to the characterization of images by Zenil et al. (2012). The basic 

idea is that objects which “contain internal evidence of a nontrivial causal history” 

(Bennett, 1988) have complex structure that require more computational time to 

reconstitute from their shortest descriptions (maximally compressed states) than objects 

without complex structure.  

 While Kolmogorov complexity can be thought of as measuring complexity in 
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terms of space (the length of the shortest description of an object), logical depth measures 

complexity in terms of time (the number of computational steps required to reconstruct 

the object from that shortest description). An important difference between the two is that 

Kolmogorov complexity considers both structured states and random states to be 

complex, but logical depth only considers structured states as complex while treating 

both trivial and random states as non-complex.  Thus, as pointed out by Zenil et al. 

(2012), logical depth may lie closer to our intuitive concept of complexity than 

Kolmogorov complexity. 

 To measure logical depth, we first compress the tensorface images by running the 

program dzip within Matlab (The Mathworks Inc., Natick, MA). Then the image is 

uncompressed using dunzip, and the elapsed time to perform the uncompression was 

measured using the Matlab tic-toc timer function. The uncompression time is measured 

1000 times for each tensorface and then averaged. Timing is measured with no user 

applications running aside from Matlab, with WiFi and Bluetooth turned off, and nothing 

attached to any of the computer ports. 

 Dzip implements the DEFLATE lossless compression algorithm. Both dzip and 

dunzip are available for download from the Matlab File Exchange: 

www.mathworks.com/matlabcentral/fileexchange/8899-rapid-lossless-data-compression-

of-numerical-or-string-variables . 

viii. Power spectra 

 We calculated the 2D spatial frequency power spectra of tensorfaces having 

different levels of complexity. The tensorfaces were first converted from color to 

grayscale images.  The 2D spectra were then transformed to 1D by performing rotational 
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averaging (averaging spectral power over all orientations in the images). 

ix. Globality index 

 We define the globality of a tensorface component as the fraction of the face it 

covers. This is the number of pixels in a tensorface divided by the average number of 

pixels in a face (averaged over all faces in the sample). The number of pixels in the faces 

is simple to determine, as the faces are on a black background and easy to segment. The 

number of pixels in a tensorface is more difficult as the tensorfaces had a continuum of 

values that could blend in with the background. Including all tensorface pixels that 

differed just a tiny bit from the background would greatly inflated the size of the 

tensorfaces and therefore their globality. 

 We therefore follow the following procedure to exclude small pixel values from 

the globality calculations and isolate the high-activity regions of the tensorfaces. First, we 

convert the tensorfaces to grayscale and subtracted the background, leaving the 

tensorfaces on a black background. Then we set a grey threshold level and exclude pixels 

below that level. The threshold is set using Otsu’s method (Otsu, 1979), which minimizes 

the intraclass variance of the pixels above and below threshold (Matlab command 

graythresh in the Image Processing Toolbox). The grayscale tensorface is then binarized 

based on that threshold level, with pixels above threshold set to white and those below 

threshold set to black. This thresholding typically leaves the high-activity tensorface 

regions as a set of disjoint white patches. To create a unitary tensorface region for 

purposes of globality calculations, all the individual white patches are enclosed by their 

convex hull (Matlab command convhull). The interior of this convex hull constitutes the 

high-activity region of the tensorface. Finally, the area of a tensorface enclosed by the 
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convex hull, measured in pixels, is divided by the area of the face. The resulting fraction 

is the globality index of the tensorface.  

x. Selectivity and Sparseness 

 We use kurtosis as a measure of both the selectivity of single tensorfaces and also 

the sparseness of populations of tensorfaces. Kurtosis is a measure of the shape of a 

probability distribution, in this case the distribution of tensorface responses to stimuli. A 

high kurtosis distribution, corresponding to high selectivity or high sparseness, 

emphasizes the peak and tails of the distribution with less probability in between. A low 

kurtosis distribution, corresponding to low selectivity or low sparseness, has a flatter 

distribution. By tensorface “response” to a stimulus we mean the weight associated with 

that tensorface when reconstructing the stimulus image. 

 Cell selectivity is based on the probability distribution of the responses of a single 

cell (single tensorface) when presented with a set of stimuli over time. Selectivity has 

also been called “lifetime sparseness” of single neurons (Willmore & Tolhurst, 2001). 

Population sparseness is based on the probability distribution of the simultaneous 

responses of a population of cells to a single stimulus (using the terminology of (Lehky, 

Kiani, Esteky, & Tanaka, 2011; Lehky, Sejnowski, & Desimone, 2005; Lehky & Sereno, 

2007)). In the work presented here, responses could take both positive and negative 

values, which we interpret as deviations from a spontaneous level of activity, and 

probability distributions were roughly symmetrical. 

The equation for kurtosis is: 
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kurtosis =
ri − r( )4

i=1

n

∑
n −1( )s4 − 3                                           (22) 

For single-cell responses, ri  refers to the response of the neuron to the ith stimulus, and 

n  refers to the number of stimuli.  For population responses, ri  refers to the response of 

the ith cell in the population to a single particular stimulus and n  refers to the number of 

cells in the population. Mean response is indicated by r , and the standard deviation of 

the responses is given by s . Subtracting three scales values so that a normal distribution 

has a reduced kurtosis of zero.  

 Kurtosis has previously been used as a measure of selectivity and sparseness in 

the theoretical literature (for example, Bell & Sejnowski, 1997; Olshausen & Field, 1996; 

Simoncelli & Olshausen, 2001). Kurtosis has also been used in the experimental literature 

for extrastriate cortex, including (Lehky et al., 2011; Lehky et al., 2005; Lehky & Sereno, 

2007; Tolhurst, Smyth, & Thompson, 2009). 

xi. Multidimensional scaling 

Multidimensional scaling (MDS) (Hout, Papesh, & Goldinger, 2013) is used to visualize 

the face space produced by tensor decomposition. The MDS analysis is based on the 

tensorface weights that allow reconstruction of the faces in the sample set, after the faces 

have been decomposed into a set of 100 tensorfaces. We examined responses (weights) of 

a population of 100 tensorfaces to each of the 128 faces in the sample face set, as well as 

the responses of those tensorfaces to the average face calculated from the 128 faces. 

Thus, in total, we have population responses for 129 faces. These faces form 129 points 

in a 100-dimensional face space defined by the tensorface population. As the relative 
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positions of faces in the high-dimensional face space cannot be visualized, we use MDS 

to reduce the dimensionality of the face space down to two dimensions while maintaining 

approximate relative positions. While MDS is useful for low-dimensional visualization, 

the MDS algorithm has nonlinearities within it and should not be relied to produce a 

quantitatively accurate depiction of biological face space.  

The responses of the tensorface population to a single face forms a response 

vector with a length of 100 elements, defining the position of that face in face space. The 

first step in performing MDS is to calculate the distances between response vectors for all 

129 faces, forming a 129x129 distance matrix. A Euclidean distance metric is used. The 

distance matrix is then fed into the cmdscale command in the Matlab Statistics and 

Machine Learning Toolbox, which performs the MDS. 

Results 

Appearance of tensorfaces 

The tensor decomposition algorithm was applied to a set of 128 sample faces 

(examples shown in Figure 2a), producing tensorface components. Shown are the 

resulting low complexity tensorfaces (rank=2, Figure 5), medium complexity tensorfaces 

(rank=8, Figure 6), and high complexity tensorfaces (rank=32, Figure 7). These are all 

shown as 200x200 pixel images. The number of tensorface components created by the 

algorithm was set by a parameter, and here we show examples of a decomposition of the 

face set into 40 components. The qualitative appearance of the components did not 

change as we varied the number of components over the range 5-100.  

An expanded view of example tensorfaces at the three complexity levels is shown 

in Figure 8. As the complexity increases, the face representation progresses from crude 
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blobs to a clear face-like appearance. 

 For comparison, eigenfaces resulting from a PCA decomposition of the sample 

face set are shown in Figure 9. They most closely resemble the high complexity 

tensorfaces. The eigenfaces have rank=142, so they are more complex than any of the 

tensorfaces we created. Applying ICA to the sample faces produced components that 

qualitatively resembled the eigenfaces and which were also highly complex, with the 

same rank=142. 

Reconstructing faces using tensorfaces 

The tensorfaces were used to reconstruct a set of test faces (Figure 3b), which 

were different from the sample faces used to create the tensorfaces. Although the tensor 

decomposition algorithm used to create the tensorfaces is nonlinear, reconstructing faces 

from a population of tensorfaces is a linear process. These face reconstructions are used 

to graphically illustrate how much information is available in the tensorfaces for 

representing faces, and does not imply that the brain reconstitutes face bitmaps 

somewhere along the visual pathways. 

Face reconstructions are shown in Figure 10a (reconstructed using low 

complexity tensorfaces), Figure 10b (reconstructed using medium complexity faces), and 

Figure 10c (reconstructed using high complexity tensorfaces). In all three cases the 

reconstructions are subjectively comparable, showing that even the blob-like, low 

complexity tensorfaces are capable of providing a good face representation.  

 Reconstruction errors are plotted as a function of the number of components in 

Figure 11a. Reconstruction error is the normalized Euclidean pixel-wise distance between 

original and reconstructed images. Not surprisingly, performance improved as tensorface 
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population size increased. There was a trade-off between tensorface complexity and the 

population size required to reach a criterion error level. A large population of low-

complexity tensorfaces can match the performance of a smaller population of high-

complexity tensorfaces. 

Reconstruction error is plotted as a function of complexity in Figure 11b (holding 

the tensorface population size constant at 100). Error is large for low-complexity 

tensorfaces, with the error dropping greatly going to medium complexity but then staying 

approximately constant with further increases in complexity. There is in fact a slight rise 

in reconstruction error at high complexities. That is because error is being measured here 

on a test set of faces different from the sample set used to create the tensorfaces, and 

high-complexity tensorfaces have a poorer ability to generalize to new stimuli. 

Generalization will be further discussed below. 

Computational complexity of tensorfaces 

 We have been measuring complexity in terms of the rank of the matrix of pixel 

values representing a tensorface image. The algorithm allows specification of the desired 

tensorface rank resulting from the decomposition process. Matrix rank is the minimum 

number of column vectors that can be used to generate all the columns in the matrix (or 

equivalently it can be done in terms of rows rather than columns). For example, a 

tensorface with rank=8 means that all 200 columns in the tensorface image can be 

generated by different linear combinations of just 8 column vectors. A matrix with a 

larger rank requires a larger basis set of vectors to define it and is therefore more 

complex. 

A standard way to measure complexity within computational theory is 
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Kolmogorov complexity, also known as algorithmic information (Grünwald & Vitányi, 

2008b; Li & Vitányi, 2008). As described in the Methods section, we operationally define 

Kolmogorov complexity as the number of bits per pixel required to store the tensorface 

image after undergoing maximal lossless compression. A more complex image requires a 

larger file size. The relationship between complexity measured as matrix rank and 

Kolmogorov complexity is plotted in Figure 12a. We see Kolmogorov complexity 

correlates with complexity measured by rank. A second measure of computational 

complexity is logical depth, the time duration of computations required to uncompress a 

compressed tensorface (Bennett, 1988, 1994; Zenil et al., 2012). The logical depth of 

tensorfaces as a function of tensorface rank is plotted in Figure 12b.  

Both Kolmogorov complexity and logical depth provide similar estimates of the 

relative complexity of different tensorfaces. Tensorfaces that compress to a small file size 

(low Kolmogorov complexity) take less computational time to uncompress (small logical 

depth). Tensorfaces that produce large compressed file sizes (high Kolmogorov 

complexity) take more computational time to uncompress (large logical depth). 

Note the large standard deviations in Figure 12. For each plotted point, even 

though all tensorfaces had identical matrix ranks, the resulting values for Kolmogorov 

complexity and logical depth were spread out over a broad range. The relation between 

tensorface rank and the two complexity measurements is therefore statistical rather than 

deterministic. 

In addition to characterizing tensorfaces by their complexity as defined by 

computational theory, we can also characterize them using concepts from signal 

processing theory. The average spatial frequency power spectra of tensorfaces at rank=2, 
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8, and 32 are plotted in Figure 13a. We see that as tensorface complexity increases the 

spectral power at high spatial frequencies also increases (Figure 13b). Computational 

complexity of tensorface receptive fields (Figure 12a,b) correlates strongly with their 

Fourier power at high spatial frequencies.  

Selectivity and sparseness of tensorfaces 

Selectivity and sparseness of neural responses to stimuli are major concerns in 

neural coding theory. Under our terminology, selectivity is a function of the statistical 

distribution of responses of a single neuron to a large set of stimuli presented sequentially 

(Lehky et al., 2005). Sparseness is a function of the statistical distribution of responses 

over a population of neurons when simultaneously presented with a single stimulus. Here 

we quantify both selectivity and sparseness by calculating kurtosis of the appropriate 

probability distribution. 

Tensorface selectivity is plotted as a function of rank in Figure 14a. Although 

there is a lot of variability for different tensorfaces, the median value of selectivity 

(kurtosis) is close to zero, independent of tensorface complexity (rank). That means that 

as one presents many faces to a particular tensorface, responses tend to be Gaussian 

distributed, as Gaussians have zero reduced kurtosis. Population sparseness of tensorfaces 

is plotted as a function of rank in Figure 14b. Although there is higher population 

sparseness with very low complexities, for medium and high complexities the sparseness 

settles down to values of around 1.0.  

Sparseness and selectivity of tensorfaces are lower than reported in monkey 

inferotemporal cortex (Lehky et al., 2011), with single-unit selectivity = 1.88 and 

population sparseness = 9.61 (as measured by kurtosis). One reason tensorfaces have 
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lower sparseness values and lower selectivity values is because responses of tensorfaces 

do not include a threshold nonlinearity for response rates. In real neurons response rates 

can’t have negative values. That causes the probability distribution of response rates to be 

skewed to the right, leading to higher values sparseness and selectivity values. Without 

that threshold nonlinearity, the response probability distributions of tensorfaces are closer 

to Gaussian and the sparseness and selectivity values are therefore smaller.  

Another factor reducing model values of sparseness and selectivity is that 

tensorfaces are linear filters, as are all the face decompositions mentioned earlier (PCA, 

ICA, NMF, AAF), whereas biological face cells are nonlinear spatial filters, as is the case 

for inferotemporal object representations in general (K. Tanaka, 1996). By being 

nonlinear spatial filters, we mean that different portions of the receptive field sum 

nonlinearly to produce the total response of a neuron to an object stimulus. As the nature 

of the spatial nonlinearities within face cells and object cells are unknown we can’t 

quantify their contributions to sparseness and selectivity. Spatial nonlinearities will be 

discussed further below. 

Tensorfaces: local or global representations 

 We define the globality of a tensorface as the fraction of the face covered by that 

tensorface. Thus, local and global representations formed endpoints on a continuum 

rather than a dichotomy. Within that continuum, we observe tensorfaces that can be 

strongly local or strongly global (Figure 15a), and also everything in between.  

To measure globality, we threshold the tensorfaces to include only the envelope 

(convex hull) of the areas that gave a “strong” activation, as described in the Methods 

section. Examples of such thresholded tensorfaces are shown in Figure 15b, with the 
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high-activation region outlined in a black line. Only the high-activation region was used 

in calculations of globality. 

 Globality as a function of tensorface complexity is plotted in Figure 15c. More 

complex tensorfaces have greater globality on average, although there is large variability 

in globality across a tensorface population. This relationship breaks down at the lowest 

values of rank. The discrepancy at low ranks appears to be an artifact of the methodology 

we are using to calculate globality. Some low-rank tensorfaces form bilaterally 

symmetric pairs of blobs at the left and right edges of the face. When those two widely 

separated blobs are enclosed in an envelope to define the high-activation region of the 

tensorface that inflates the area covered by the tensorface, thereby increasing the 

globality measure as we calculate it. 

Generalization to statistically novel categories of faces 

When previously examining face reconstructions based on tensorfaces (Figures 10 

and 11), we used a set of test faces (Figure 3b) that closely resembled the original sample 

set (Figure 3a). Even though the two sets contained different individuals, they are both 

drawn from the same statistical distribution of face parameters in the face generating 

software and thus are statistically non-novel. As used here, the “statistically non-

novel/statistically novel” distinction is based purely on the physical characteristics of 

faces and not cognitive and semantic factors involved. 

In Figure 16 we examine what happens when we reconstruct statistically novel 

faces that are radically different from those used to create the tensorfaces. Yoda (Figure 

16ai) is a face we can instantly perceive without a period of training, yet it is unlikely 

from an evolutionary perspective that we would have developed face cells specifically 
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tuned to handle that stimulus. Presented here are reconstructions of Yoda using 

tensorface populations of different complexities that were created using human faces. All 

the tensorface reconstructions are of poor quality, as nothing resembling this stimulus 

was part of the face sample set used to create the tensorfaces. However, subjectively, it 

looks as if the low-complexity reconstruction is better than the high-complexity one. The 

high-complexity reconstruction appears to be overconstrained to resemble the faces in the 

training set. 

 Measuring reconstruction error, we can see the reconstruction error of Yoda does 

indeed get worse as tensorface complexity increases (Figure 16aii, dashed line). That 

trend is the opposite of what we saw for the reconstruction of the test face set, where 

reconstruction error decreased with greater tensorface complexity (Figure 16aii, solid 

line, repeated from Figure 11b). Figure 16bi show the reconstruction of another 

statistically novel face far beyond the bounds of what was included in the sample face set, 

the face of a chimpanzee. As with Yoda, we see in Figure 16bii that reconstruction error 

increases with tensorface complexity, the opposite of what occurs when reconstructing 

the test face set.  

Although high-complexity tensorfaces produce the best reconstructions of faces 

that are statistically non-novel, they have a reduced ability to generalize to faces in 

statistically novel faces. For statistically novel faces, the low-complexity tensorfaces 

produce the best reconstructions. The lower ability to generalize as tensorface complexity 

increases cannot be explained by changes in the selectivity of tensorfaces. We see in 

Figure 14a that tensorface selectivity remains constant (and low) regardless of tensorface 

complexity. 
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Representation of the average face 

There is evidence indicating that the representation of the average face forms the 

origin of a high-dimensional face space (Leopold et al., 2001; Rhodes & Jeffery, 2006; 

Tsao & Freiwald, 2006; Wilson et al., 2002). Using multidimensional scaling (MDS) 

based on a Euclidean distance metric, we examined the location of the average face in a 

face space formed by 100 tensorfaces. This set of faces thus formed 129 points (128 

sample faces plus the average face) in a 100-dimensional face space. The MDS analysis 

are based on tensorfaces with rank=8, but other rank values performed similarly. 

The result of MDS analysis is given in Figure 17. It shows that the faces of 

different racial groups and genders cluster into different regions of face space. 

Furthermore, we see that the face space formed by the tensorfaces places the 

representation of the average face at the origin of the face space. Note that the 

representation of the average face at the origin is due to activity across a population of 

tensorfaces. There is no individual tensorface that specifically represents the average 

face.   

Cross-stimulation of tensorfaces by non-face stimuli 

A complete and autonomous face processing system should reject non-face 

inputs. Therefore, now we look at reconstruction of a non-face object by tensorfaces. 

Reconstruction of a melon is shown in Figure 18a. The reconstruction obviously fails, 

producing an enormous reconstruction error (Figure 18b). Going beyond just the 

magnitude of the error, the organization of the errors gives the reconstructed melon the 

shape of a face, although with melon texture on it.  

Representing faces is essentially the only thing that tensorfaces are capable of. 
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Any object presented to that face representation system will be interpreted as a face. In 

contrast, the ideal representation of a non-face object produced by a specialized face 

representation system should be null, no response.  

The spurious reconstruction of non-face objects as faces by the tensorface 

population occurs because response magnitudes of tensorfaces are similar to face and 

non-face objects (Figure 18c). This cross-stimulation of tensorfaces by face and non-face 

stimuli appears to be the result of the low stimulus selectivity of tensorfaces seen in 

Figure 14a. As will be discussed further below, a possible solution to this cross-

stimulation problem would be to have a nonlinearity associated with the linear tensorface 

receptive fields that would filter out non-face stimuli from being processed (Figure 18d). 

Discussion 

Based on measures of algorithmic information (Kolmogorov complexity) we 

show here that low-complexity and high-complexity faces have different properties, and 

therefore that complexity can be a way of constraining possible ways that face space is 

organized. Just as Shannon information has proven useful for understanding processing in 

early vision (Barlow, 1961; Field, 1994), we suggest that Kolmogorov complexity and 

related measures such as logical depth may prove useful in providing a framework for 

studying high-level vision, including face recognition and object recognition in general.  

 Cover and Thomas (2006), in their textbook on information theory, state that “we 

consider Kolmogorov complexity to be more fundamental than Shannon entropy”.  

Kolmogorov complexity is associated with concepts from computational theory (Turing 

machines), while Shannon entropy is a statistical theory not derived from computational 

theory. Both Shannon entropy and Kolmogorov complexity can be used as measures of 
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efficient coding, indicating how compressed a representation can be. In addition to 

considering compression from the statistical perspective of Shannon entropy (Barlow, 

1961; Field, 1994; Olshausen & Field, 2004) it can also be considered from the 

algorithmic perspective of Kolmogorov complexity (Adriaans, 2007; Chater & Vitányi, 

2003; Feldman, 2016). A critical difference between the two types of information is that 

Shannon entropy is defined probabilistically in terms of a distribution over an ensemble 

of symbols, without any connection to the structure of individual messages, while 

Kolmogorov complexity is a deterministic concept measuring information of a single 

entity (message) by itself in isolation (Grünwald & Vitányi, 2008a). While assigning 

probabilities to repetitive low-level structures (for example, V1 Gabor receptive fields) is 

clearly reasonable within the framework of Shannon entropy, assigning such probabilities 

to high-level structures that are essentially unique (for example, inferotemporal receptive 

fields) may be problematic (Chater & Vitányi, 2003). On the other hand, as a non-

probabilistic computation, Kolmogorov complexity can assign a measure of information 

content to an individual high-level structure purely in terms of its internal structure.  

Receptive field complexity appears to increase as one ascends through the 

hierarchy of visual cortical areas. Although this impression is not yet confirmed through 

neurophysiological measurements of Kolmogorov complexity, the ventral stream deep 

learning model of Güçlü and van Gerven (2015) reinforces this perception of increased 

complexity, as it shows a monotonic increase in Kolmogorov complexity as a function of 

the layer in the network. While Kolmogorov complexity has not been measured 

experimentally, sparseness has been. It is well established that visual representations are 

sparse (Dan, Atick, & Reid, 1996; Lehky et al., 2011; Lehky et al., 2005; Lehky & 
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Sereno, 2007; Pitkow & Meister, 2012; Rolls & Tovée, 1995; Vinje & Gallant, 2000; 

Willmore, Mazer, & Gallant, 2011). What is not well established is the gradient of how 

sparseness changes across different cortical areas, as such data is limited. Kolmogorov 

complexity and sparseness need not necessarily be correlated. Just because receptive field 

organization may appear highly complex does mean that there must be a correspondingly 

high level of sparseness (Figure 14). Indeed, a comparison of a low-level visual area (V1) 

(Lehky et al., 2005) and a high-level visual area (anterior inferotemporal cortex) (Lehky 

et al., 2011) shows only a very modest increase in sparseness (median kurtosis going 

from 0.84 to 1.88, measuring lifetime sparseness or what we call cell selectivity). The 

data of Willmore et al. (2011) indicates sparseness stays essentially the same going from 

V1 to V4. As Willmore et al. (2011) conclude, the data suggests that “maximization of 

lifetime sparseness is not a principle that determines the organization of visual cortex”.  

In contrast, there appears to be a steadily and substantially increase in receptive field 

complexity across the cortical areas of the ventral visual hierarchy. In view of that, 

Kolmogorov complexity may be a more interesting parameter in high-level visual 

processing than sparseness. 

Given these preliminary remarks on the general significance of using Kolmogorov 

complexity for characterizing visual receptive fields, we now turn to face processing 

specifically. The different complexities of tensorfaces we examine here demonstrate a 

range of possibilities that biological face cells could have. In particular, low and medium 

complexity face cells form feasible representations in addition to very high complexity 

representations, such as those formed by PCA eigenfaces or variants thereof  (e.g., active 

appearance models, Chang and Tsao (2017)). Such high-complexity face representations 
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have in the past been suggested as forming the basis of biological face space. The actual 

complexity of biological face cells remains a question for future experimental studies.  

We observe a trade-off between receptive field complexity and the population 

size necessary to reach a criterion error in reconstructing faces (Figure 11a). A large 

population of low-complexity tensorfaces is equivalent to a smaller population of high 

complexity tensorfaces. This trade-off can be observed for receptive fields in earlier 

cortical areas. For example, large populations of low-complexity Gabor functions in 

striate cortex can also accurately represent faces, and face identification can be performed 

using Gabor-based face representations without any face cells (e.g., Wiskott, Krüger, 

Kuiger, & von der Malsburg, 1997). 

From the perspective of information contained in a population of tensorfaces as 

indicated by reconstruction error, there doesn’t seem to be a benefit to using high-

complexity face cells. Reconstruction error as a function of tensorface complexity does 

not decrease moving from medium- to high complexity tensorfaces (Figure 11b). 

Moreover, high-complexity face cells incur high computational costs to create, measured 

as Kolmogorov complexity or logical depth (Figure 12). On the other hand, low-

complexity cells are inefficient in that they require larger population sizes to reach a 

criterion reconstruction error. The “sweet spot” for face representations may be at 

intermediate complexity, perhaps at about rank=8. Nevertheless, low-complexity face 

cells may balance their representational inefficiency with their increased ability to 

generalize to statistically novel faces (Figure 16). Thus there may be an advantage to 

having a mixture of low to medium complexity face cells, but not high-complexity face 

cells such as produced by PCA. Furthermore, not all face cells in a population need to 
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have the same level of complexity. That is another empirical question for future 

experimental work. 

What might be the advantage of increased complexity of face representations in 

higher visual cortical areas (i.e., the creation of face cells)? The smaller population sizes 

allowed by more complex receptive fields means that face spaces with lower 

dimensionalities can be created (see Lehky, Kiani, Esteky, and Tanaka (2014) for a 

discussion of dimensionality). In other words, creating face representations with more 

complex receptive fields may be a dimensionality reduction technique. Lower-

dimensional face spaces may make it easier to categorize faces (Plastria, De Bruyne, & 

Carrizosa, 2008). However, the benefits for creating more efficient face spaces using 

more complex receptive fields must be balanced with computational costs of the 

increased complexity as measured by Kolmogorov complexity and logical depth of 

receptive field spatial structure.  

There is a high correlation between computational complexity (Figure 12) and 

spectral power at high spatial frequencies (Figure 13b). The link between computational 

complexity and spatial frequency provides additional motivation to characterize spatial 

frequency properties of face cells, expanding upon current physiological (Inagaki & 

Fujita, 2011; Rolls, Baylis, & Hasselmo, 1987) and psychophysical studies (Costen, 

Parker, & Craw, 1996; Gaspar, Sekuler, & Bennett, 2008; Näsänen, 1999). Nevertheless, 

tensorfaces with different complexities are not simply Fourier amplitude filtered versions 

of each other but have substantial differences in appearance (phase spectra). The spatial 

frequency content of a facial representation is not sufficient to completely characterize its 

complexity. 
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We worked with colored faces rather than the monochromatic faces as used in 

most studies of face coding. Color can be an important aspect of face identification 

(Nestor, Plaut, & Behrmann, 2013; J. Tanaka, Weiskopf, & Williams, 2001), particularly 

if the shape information is degraded or ambiguous (Choi, Ro, & Plataniotis, 2009; Yip & 

Sinha, 2002). We include joint shape/color sensitivity in the tensorfaces developed here. 

Responsiveness to both shape and color are found in the same face cells in the 

inferotemporal cortex of monkeys as measured neurophysiologically (R. Edwards, Xiao, 

Keysers, Földiák, & Perrett, 2003). However, there is also fMRI evidence for separate, 

parallel channels coding face shape and color (Lafer-Sousa & Conway, 2013; Lafer-

Sousa, Conway, & Kanwisher, 2016). 

A significant question is whether the representation of faces is global (holistic) or 

local (parts-based) (Behrmann, Richler, Avidan, & Kimchi, 2015; Maurer, Grand, & 

Mondloch, 2002; Piepers & Robbins, 2012; Richler, Palmeri, & Gauthier, 2012; J. 

Tanaka & Simonyi, 2016). We examined this issue by measuring a globality index for 

tensorfaces, defined as the average fraction of the face covered by the tensorfaces. 

Tensorfaces across a population exhibit a great deal of variability in their globality. Some 

tensorfaces are local and others are strongly global. On average, high complexity 

tensorfaces are more global than low complexity ones (Figure 15). Typically, a tensorface 

covers a sizeable fraction of a face, but not the entire face.  

This variability in globality is consistent with both psychophysical (J. Tanaka & 

Simonyi, 2016) and neurophysiological reports (Freiwald et al., 2009), which conclude 

that face processing involves both global and parts-based processing. We have previously 

proposed such mixed and intermediate globality for inferotemporal object representations 
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in general, not just faces (Lehky & Tanaka, 2016), based on data from monkey 

neurophysiology showing sensitivity of neurons to a partial set of features but generally 

not the entire object (Fujita, Tanaka, Ito, & Cheng, 1992; Ito, Fujita, Tamura, & Tanaka, 

1994; Ito, Tamura, Fujita, & Tanaka, 1995; Kobatake & Tanaka, 1994; K. Tanaka, Saito, 

Fukada, & Moriya, 1991; Yamane, Tsunoda, Matsumoto, Phillips, & Tanifuji, 2006). 

Recently Chang and Tsao (2017) have reported that biological face space 

corresponds to one specific linear space that they have discovered. However, we believe 

that the linear face space they report is not uniquely defined under their mathematical 

data analyses. Rather, a variety of different face spaces are consistent with their data.  

Approximate linear transforms (i.e. multiple linear regression) can be fit between 

face coefficients for various linear decompositions (PCA, ICA, NMF, our version of 

tensorfaces, etc.). Fits between the different linear face decompositions will be good 

provided they are each capable of doing acceptable reconstructions of faces (for example, 

under some psychophysical criterion for reconstruction error). If the neurophysiological 

data provides a good fit to face components from one linear decomposition, such as 

active appearance model (AAT) of Chang and Tsao (2017), then the data will also 

provide good fits to other linear face decompositions. Chang and Tsao (2017) have 

studied one pre-determined linear face decomposition, and since it happened to meet their 

criterion of goodness of fit, they did not continue to examine other possible 

decompositions. 

For example, we investigated the transform between PCA coefficients (	PCAcoeff

) and tensor coefficients ( 	tensorCoeff ) for two linear face decompositions. This 

transform is given by 		PCAcoef ′f = tensorCoeff *b , where 	PCAcoeff  and 	tensorCoeff  are 
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matrices of coefficients for a set of faces, one face per column, and 	PCAcoef ′f  are 

estimated PCA coefficients. The coefficient 	b  is given by 

		b= pinv tensorCoeff( )*PCAcoeff , where 	pinv  is the Moore-Penrose pseudoinverse 

operator performing a multiple linear regression, and 	tensorcoeff  has been augmented by 

a column of ones to include offsets. There were 128 faces as input, the tensor 

decomposition had 100 components, and we modeled the first 50 PCA components. We 

fit the model leaving one face left out for testing, repeating with a different face being left 

out. The results show that when comparing actual 	PCAcoeff  and estimated 	PCAcoef ′f , 

the model accounts for a 0.985 fraction of the variance. This shows that it is possible to 

predict 	PCAcoeff  from 	tensorCoeff  with high accuracy. Therefore, the two linear face 

decompositions would each provide essentially the same fit to the neurophysiological 

data. The interchangeability between different linear face spaces means that if one wants 

to select a face model, it would have to be constrained based on some criterion other than 

overall goodness of fit of data to one single linear model in isolation, but perhaps based 

instead on comprehensive experimental characterizations of receptive fields of individual 

face cells across the population.  

Furthermore, experimental face stimulus sets are limited in that they cover only a 

limited range of the faces that are possible. It is conceivable that observed face spaces 

such as Chang and Tsao (2017) are approximately linear at a local scale but that a more 

complete sampling of faces will reveal a nonlinear face space at a broader scale. Even 

color space at high-level visual cortex is a complicated, nonlinear space (Bohon, 

Hermann, Hansen, & Conway, 2016; Komatsu, Ideura, Kaji, & Yamane, 1992; Lehky & 
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Sejnowski, 1999), and there is no reason to expect that face space is not similarly 

complicated and nonlinear. 

Underlying a possible nonlinear face space would be face cells themselves that act 

individually as spatially nonlinear filters. Reports of inferotemporal processing indicate 

that object representations, and in particular face representations, involve nonlinear 

spatial filters, as mentioned earlier (Owaki et al., 2018; K. Tanaka, 1996; Yamane et al., 

2006). Those nonlinear spatial interactions are why we can’t map face cell receptive 

fields with a simple stimulus spot as we do in striate cortex. The spurious reconstruction 

of non-face objects using linear components such as tensorfaces (Figure 18) and 

eigenfaces (Figure 2b in Tsao and Livingstone (2008)) also indicates a requirement to 

introduce some sort of nonlinearity in face cells.  

Linear models of biological facial representations, including the particular 

implementation of tensorfaces used here, can reveal some significant aspects of face 

processing and thus can be useful in theoretical discussions, as long as the biological 

limitations of those models are kept firmly in sight. However, without nonlinearity they 

cannot be considered complete solutions. Nonlinearity is a central stumbling block in 

understanding biological face processing and object processing generally. One approach 

to introducing nonlinearity into face representations is illustrated by the nonlinear tensor 

modeling of Vasilescu and Terzopoulos (2011). However, there are a multitude of other 

possibilities, including the development of Kolmogorov-complexity constrained deep 

learning networks.   

Overall, the results here suggest that spatial complexity of face cells is likely to be 

a significant factor, among others, in characterizing face space. Defining the complexity 
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of face representations may contribute to a more complete framework for guiding future 

research. 
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Figure captions 

Figure 1. Examples of different classes of faces included in the face sets. 

Figure 2. Face sets used to examine the tensor decomposition algorithm.  a. Sample set. 

Shows 64 out of 128 faces serving as input to the algorithm to create the tensorfaces.  b. 

Test set. Contains a different set of faces to evaluate properties of the tensorfaces.  

Figure 3. Comparison between matrix methods used in PCA and tensor methods. a. 

Matrix methods can only operate on 2D data. That requires faces to be unfolded into 1D 

vectors before being placed as columns in a 2D matrix.  b. Tensor methods allow data 

structures with an indefinite number of dimensions. That means faces do not need to be 

vectorized, but can be stacked on top of each other retaining their 2D organization. Here 

we used a 4D data structure for faces, including two spatial dimensions, a color 

dimension, and a dimension representing faces of different individuals. 

Figure 4. Illustration of the tensor decomposition equations.  Order-3 tensors 

		  Y ∈!I1× I2×I3  are shown here as examples.  a. Block term decomposition (BTD) for 	P  

terms of Kronecker tensor products of 	 
Ap  

(weights) and 	 
Xp  

(tensorface patterns) (Eq. 

7), where ⊗  is the Kronecker product and 	P  is the number of tensorfaces in the 

decomposition. In general the algorithm allows tensor size for each term 	P  to be set 

individually, as shown in the diagram, but in practice they were all set the same size.  b. 

Rank-constrained BTD decomposition illustrated for a single term. 	 
Ap  and 	 

Xp  
can each 

be expressed as a set of matrices 	 Um  and 		 V(l )  (indicated by small rectangles) (Eqs. 8 and 

9). Setting the number of columns for those matrices equal to the desired rank values, 	
Sp  
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and 	
Rp  respectively imposes the rank constraints of the decomposition. Rank of the 	 

Xp  

decomposition determines tensorface complexity. Rank of the 	 
Ap  

decomposition was 

always set to 1 here. 

Figure 5. Tensorfaces with low complexity (rank=2). 

Figure 6. Tensorfaces with medium complexity (rank=8). 

Figure 7. Tensorfaces with high complexity (rank=32). 

Figure 8. Example tensorfaces with different levels of complexity. 

Figure 9. Eigenfaces resulting from PCA decomposition of the sample face set. This 

shows the first 64 eigenfaces out of 128. PCA calculated after converting from RGB to 

L*A*B color space. When vectorizing the faces, the three color channels were 

concatenated to form one long 1D vector for each face. The average face was not 

subtracted prior to performing PCA, so the first eigenface here is the average face.  

Figure 10. Reconstructions of the face test set (Figure 3b) using tensorfaces.  a. 

Reconstruction using tensorfaces with low complexity (rank=2, Figure 5).  b. 

Reconstruction using tensorfaces with medium complexity (rank=8, Figure 6).  c. 

Reconstruction using tensorfaces with high complexity (rank=32, Figure 7). 

Figure 11. Plots of reconstruction errors.  a. Mean reconstruction error as a function of 

the number of tensorface components, holding tensorface complexity (rank) constant. 

Mean was calculated over 128 faces in sample set. b. Mean reconstruction error as a 

function of tensorface complexity (rank), holding the number of tensorface components 



 68 

constant. Mean and standard error calculated over 128 faces in sample set.   

Figure 12. Complexity measurements of tensorface images. a. Relation between 

tensorface rank and mean Kolmogorov complexity.  b. Relation between tensorface rank 

and mean logical depth. Means were calculated from 100 tensorfaces. Shaded area shows 

standard deviation. 

Figure 13. Spatial frequency power spectra of tensorfaces. a. Power spectra for 

tensorfaces for different rank values. Geometrical means of power spectra for 100 

tensorfaces shown. b. Power at a high spatial frequency (100 cycles/image) as a function 

of tensorface rank. Geometrical means and geometrical standard deviations plotted.  

Figure 14. Median cell selectivity and population sparseness of tensorfaces as a function 

of tensorface rank. Responses are from 100 tensorfaces stimulated by the 128 faces in the 

sample set. Cell selectivity and population sparseness both calculated as kurtosis of the 

probability distribution of responses. Cell selectivity refers to sparseness of single 

neurons calculated to a set of stimuli presented over time (also called lifetime 

sparseness). Population sparseness refers to population response to a single stimulus. 

Shaded area shows interquartile range. a. Cell selectivity.  b. Population sparseness. 

Figure 15. Globality of tensorface representations.  a. Example local and global 

tensorfaces.  b. Examples showing tensorface “high-activation” regions (enclosed by 

black lines) used to define the area covered by a tensorface. The globality of a tensorface 

is defined as the area of the tensorface divided by the average area of a face.  c. Plot of 

mean globality as a function of tensorface rank. Mean is calculated over 100 tensorfaces. 

Shaded area shows standard deviation. 
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Figure 16. Reconstruction of statistically novel faces. These faces are radically different 

from sample set (Figure 3a) used to create the tensorfaces.  ai. Reconstructing Yoda using 

tensorfaces with different complexities.  aii. Relative reconstruction error for Yoda as a 

function of tensorface complexity (rank) (blue line), as well as relative reconstruction 

error for the test face set (red line). The red line is duplicated from Figure 11b.  

Reconstruction error decreases as a function of tensorface complexity for familiar faces 

(red) but increases for the novel face (blue). Each line independently normalized so that 

the maximum equals one. bi. Reconstructing chimp using tensorfaces with different 

complexities.  bii. Relative reconstruction error for chimp as a function of tensorface 

complexity (rank) (blue line), as well as relative reconstruction error for the test face set 

(red line). The red line is again duplicated from Figure 11b.  As with Yoda, 

reconstruction error decreases as a function of tensorface complexity for familiar faces 

(red) but increases for the novel face (blue). 

Figure 17. Average face is at the origin of the face space.  a. Average face, based on 128 

faces in sample set.  b. Face space as derived by multidimensional scaling (MDS). Based 

on responses of a population of 100 tensorface cells (rank=8) to 128 face stimuli, as well 

as responses of those tensorfaces to the average face. MDS reduced the original 100-

dimensional face space to a 2-dimensional approximation to allow visualization. Plot 

symbols show positions of individual faces in the face space, classified by race and 

gender. Black star shows the average face located at the origin of the face space.  

Figure 18. Reconstruction of a non-face object (melon) using tensorfaces (rank=8).  a. i. 

Original melon image.  ii. Reconstructed melon using tensorfaces derived from human 

face sample set.  iii. Ideal reconstruction of melon, which should be null for a specialized 
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face processing system.  b. Reconstruction error for melon compared to other stimuli. 

Human faces response shows the mean and standard deviation for 128 faces in the sample 

set. Other response values are for a single stimulus image.  c. Average response 

magnitudes of tensorfaces to face and non-face stimuli, which are very similar. This 

similarity leads tensorface populations to create spurious reconstructions of non-face 

objects.  Shows mean responses of 100 tensorfaces of rank 8 to 512 faces and 512 non-

face objects. d. To prevent spurious reconstructions of non-face stimuli, the face 

identification stage (tensorfaces) require a nonlinearity. Two possible organizations for 

such nonlinearity are: i. Sequential nonlinearity, with nonlinear face detector stage 

preceding linear face identification stage in separate neurons.  ii. Integrated nonlinearity 

with nonlinear spatial interactions present within receptive fields of single face cells. In 

this case face detection and face identification occur concurrently within single face cells.    
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Figure 12 
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Figure 13 
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