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Abstract

Probability distributions of macaque complex cell responses to a large set of images were determined. Measures of selectivity

were based on the overall shape of the response probability distribution, as quantified by either kurtosis or entropy. We call this

non-parametric selectivity, in contrast to parametric selectivity, which measures tuning curve bandwidths. To examine how receptive

field properties affected non-parametric selectivity, two models of complex cells were created. One was a standard Gabor energy

model, and the other a slight variant constructed from a Gabor function and its Hilbert transform. Functionally, these models dif-

fered primarily in the size of their DC responses. The Hilbert model produced higher selectivities than the Gabor model, with the

two models bracketing the data from above and below. Thus we see that tiny changes in the receptive field profiles can lead to major

changes in selectivity. While selectivity looks at the response distribution of a single neuron across a set of stimuli, sparseness looks

at the response distribution of a population of neurons to a single stimulus. In the model, we found that on average the sparseness of

a population was equal to the selectivity of cells comprising that population, a property we call ergodicity. We raise the possibility

that high sparseness is the result of distortions in the shape of response distributions caused by non-linear, information-losing trans-

forms, unrelated to information theoretic issues of efficient coding.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

How the visual system encodes images includes ques-

tions of why individual visual units have particular

receptive field organizations, and how populations of

units act together. One approach to systematically char-

acterizing receptive fields is to quantify their stimulus
selectivities. Here we are concerned with determining

selectivities of striate complex cells to ‘‘complicated’’

stimuli, including natural images. This will involve con-
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sideration primarily of non-linear models of complex

cells, although some single-unit data will be analyzed

as well. Complex cells comprise a large percentage of

the units in V1, with estimates ranging from around

40–90% of the total (De Valois, Albrecht, & Thorell,

1982; Hubel & Wiesel, 1968; Schiller, Finlay, & Volman,

1976).
Related to selectivity is the idea of sparseness, which

attempts to explain receptive fields in terms of informa-

tion theoretic notions of efficient coding (Atick, 1992;

Barlow, Kaushal, & Mitchison, 1989; Field, 1994; Field,

1999; see Simoncelli & Olshausen (2001) and Simoncelli

(2003), for reviews). Under sparse coding, a small subset

within a neural population will respond strongly to a

stimulus, while most will respond poorly. Sparse codes
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can be efficient from an information theoretic stand-

point when they arise from sets of receptive fields that

are matched to statistical regularities in the environ-

ment. Efficiency in this case means reduced redundancy

(decorrelation) among responses of units within a popu-

lation while seeking to preserve image information as far
a possible. This decorrelation is produced by linear

operations on the stimulus input, in the form of convo-

lution with a set of receptive fields. (Some recent sparse-

ness models go beyond decorrelation, and attempt to

pick out higher order visual structures by including an

additional non-linear layer; for example see Karklin &

Lewicki (2003)).

In this study, we are concerned with what we call
‘‘non-parametric’’ selectivity. Non-parametric selectivity

is determined by the shape of the probability density

function (pdf) of response magnitudes to a large set of

stimuli (Fig. 1B). The shape is quantified by measures

such as kurtosis or entropy, which will be explained

more fully in Section 2. These measures seek to pick

out pdf�s that are ‘‘peakier’’ than a Gaussian, and with

heavier tails. Such distributions indicate responses that
are close to spontaneous levels for most stimuli but

occasionally are much larger, with intermediate re-

sponses being less common than under a Gaussian dis-

tribution. The Gaussian distribution serves as a

reference distribution indicative of low selectivity. In

contrast to this non-parametric selectivity, the more

commonly used parametric selectivity does not depend

on response probability distributions, but rather meas-
ures the bandwidth of response tuning curves to some

parameter, such as orientation or spatial frequency

(Fig. 1A).

The use of non-parametric selectivity is appropriate

when dealing with ‘‘complicated’’ stimuli, such as natu-

ral images, that are not ordered by some metric. One

might want to use such stimuli to characterize the sys-
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Fig. 1. Two approaches to defining selectivity. (A) Parametric selectivity: Se

stimulus parameter (orientation, spatial frequency, etc.). (B) Non-parametr

entropy, describing the shape of the probability distribution of response magn

images, is not ordered by some parameter.
tem under more ecological conditions, or perhaps be-

cause receptive fields are so complicated that we do

not understand along what parameters they parse their

input.

Selectivity is defined here in terms of the probability

distribution of responses of a single unit to a population
of stimuli. Sparseness, on the other hand, is in some

sense the converse of selectivity. Sparseness is deter-

mined by the distribution of responses of a population

of units to a single stimulus. In both the cases, although

the probability distributions are measuring different

things, the measurement of the distribution shapes can

be calculated using the same methods.

To compare our terminology with that used in some
previous studies, our ‘‘non-parametric selectivity’’ is

equivalent to the ‘‘lifetime sparseness’’ used by Willmore

and Tolhurst (2001). What Vinje and Gallant (2000,

2002) call the sparseness of complex cells is, under

our terminology, not sparseness but non-parametric

selectivity.

Although selectivity and sparseness measure different

things, they are nonetheless related quantities. In partic-
ular, the average sparseness of a population over multi-

ple stimulus inputs must equal the average selectivity of

the neurons within the population (Földiak, 2002), pro-

vided responses of units are uncorrelated. Therefore

populations that exhibit sparse coding will be composed

of neurons showing high selectivity. We label systems

exhibiting this equivalence between selectivity and

sparseness as ‘‘ergodic’’. (This is a term taken from sta-
tistical mechanics, where the average of a single system

across time is compared with the average of an ensemble

of systems at one time.) The relationship between

sparseness and selectivity will be further discussed in

the section on ergodicity.

Algorithms that generate sparse codes have been

applied to natural images (Bell & Sejnowski, 1997;
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Fig. 2. Examples of synthetic stimulus images, and resulting responses.
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Olshausen & Field, 1996, 1997; van Hateren & van der

Schaaf, 1998). The resulting receptive fields resemble

Gabor functions, similar to striate simple cells (Jones

& Palmer, 1987), although not incorporating the recti-

fying non-linearity of actual simple cells. These results

have been used to support the hypothesis that V1
implements statistically efficient coding through

sparseness.

Moving to V1 complex cells, Vinje and Gallant (2000,

2002) have also interpreted observation of sparseness in

their data as supporting the efficient coding hypothesis.

While both our data and modeling confirm that complex

cell responses are indeed sparse, we shall question

whether a high sparseness index is indicative of efficient
coding in this case. Although efficient coding can be a

useful basis for understanding receptive field organiza-

tion in the early, linear stages of visual processing, other

conceptual frameworks may be necessary for dealing

with non-linear, information-losing transforms such as

occur in complex cells and beyond in the visual

pathways. After documenting some response properties

of complex cells and modeling them, we shall present
a more general discussion of the limitations of

information theoretic modeling in the context of such

a system.
Responses are taken from experimental data for a single complex cell.

By presenting a large set of images and tabulating the probability

distribution of the resulting responses, the non-parametric selectivity

of a unit can be measured.

2. Materials and methods

2.1. Data acquisition

Twenty-four V1 units were recorded from an anesthe-

tized macaque monkey (M. fasicularis). Receptive fields

were within 5� of fixation. All were known to be com-

plex cells from the equality of responses to both white

and black bars against a gray background. Stimuli con-

sisted of 157 synthetic patterns of two types, 78 random

textures and 79 shaded paraboloid figures, displayed
within a circular aperture of 1.5� (examples shown in

Fig. 2). Patterns were presented in random order, and

interspersed with more traditional stimuli such as bars

and gratings, although responses to those simpler stim-

uli are not considered here. Presentation of each pattern

was repeated 30 times. Stimulus duration was 200ms,

with a 250ms blank period between stimuli, a fast pres-

entation pace in order to accumulate data for many pat-
terns. Details of the physiological techniques have been

described previously (Lehky, Sejnowski, & Desimone,

1992), and the data presented here represent a subset

of data from that publication.

2.2. Data analysis

The peristimulus time histogram (PSTH) for each im-
age was determined from the spike train running with a

50ms lag relative to stimulus presentation, to take V1
latency into account. Spikes rates were estimated using

a two-stage adaptive kernel technique (Silverman,

1986). In the first stage, each spike was convolved with

a Gaussian having rinit = 20ms and the resulting curves

summed to give a preliminary PSTH. In the second

stage, going back to the raw spike train, each spike

was convolved with a Gaussian whose r was inversely
related to the local spike rate estimated in the prelimi-

nary PSTH, with r ¼ rinit

ffiffiffiffiffiffiffiffi
m=r

p
, where m is the geomet-

ric mean of the spike rate over the stimulus duration,

and r is the spike rate at a given instant. Data from all

repetitions of each stimulus were pooled prior to form-

ing the kernel estimate.

For each unit, 157 PSTH�s were determined, one for

each stimulus image. Each PSTH was then reduced to a
single summary number. We use mean response as the

summary statistic in the presentation below, but using

peak responses instead would not have made much dif-

ference. From these 157 numbers a probability distribu-

tion of response magnitudes was compiled. As the

observed probability distributions for the 24 units were

positively skewed, for descriptive purposes they were

fit with gamma distributions:

f ðr j a; bÞ ¼ 1

baCðaÞ r
a�1e

�r
b ð1Þ
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2.3. Measuring selectivity

Non-parametric selectivity measures should depend

solely on the response distribution shape, and not its

scale (variance) or location (mean). A number of meas-

ures are available, although all have drawbacks of vari-
ous sorts and there is room for the development of new

methods for dealing with this issue.

2.3.1. Kurtosis

The most common selectivity index is the reduced

kurtosis of the response probability distribution. This

is the normalized fourth moment of the distribution, re-

duced by subtracting three:

SK ¼ hðri � �rÞ4i
r4

� 3 ð2Þ

where ri is the unit�s response to the ith image, �r is the

mean response over all images, r is the standard devia-

tion of the responses, and h Æ i is the mean value opera-
tor. Subtracting three normalizes the measure so that a

Gaussian has a kurtosis of zero. Larger values of SK
correspond to greater selectivity. A practical problem

with using kurtosis is that it involves raising data to

the fourth power, which makes estimates of this measure

highly sensitive to noise in the data.

2.3.2. Activity fraction

Another selectivity statistic in the literature is:

A ¼
Xn
i¼1

ri=n

 !2,Xn
i¼1

ðr2i Þ=n ð3Þ

(Rolls & Tovee, 1995), where n is the number of stimulus

images. It measures the fraction of units active on aver-

age over a set of inputs, generalized for continuous-val-

ued units rather than binary ones. Small values of A
indicate high selectivity. The activity fraction measure

was slightly modified by Vinje and Gallant (2000):

SA ¼ 1� A
1� 1=n

ð4Þ

thereby inverting and rescaling the index.

A problem with activity fraction is that, in addition

to being a measure of probability distribution shape, it
is also sensitive to the distribution�s mean and variance.

The close relation between activity fraction and variance

can be seen by comparing Eq. (3) with a common for-

mula for variance:

Xn
i¼1

ðr2i Þ=n�
Xn
i¼1

ðri=nÞ
 !2

ð5Þ

The activity fraction index takes the two terms in the

variance formula and divides rather than subtracts
them, leading to a measure that is still proportional to

variance.
To properly use this measure, the data should be

standardized for mean and variance beforehand. We will

not be using activity fraction, in preference for the en-

tropy measure described next.

2.3.3. Entropy

Introduced here is a measure of selectivity based on

the entropy of the response probability distribution.

This has the advantage of connecting more directly to

information theoretic definitions of sparseness than does

kurtosis. In this measure, selectivity is quantified as the

decrease in entropy relative to a Gaussian distribution,

which has maximum entropy for a fixed variance:

SE ¼ HG � HðrÞ ð6Þ
where HG is the entropy of a Gaussian, and H(r) is the

entropy of a unit�s response distribution taken from the

data. Equating high selectivity with low entropy cap-

tures the characteristic of a highly selective unit having

little response to most stimuli and a large response to

a few. The value of SE has a minimum of zero, and in-
creases with no upper bound as selectivity increases (be-

cause the entropy of the data H(r) can have negative

values, as it involves a continuous-valued variable, re-

sponse magnitude). Since the variance of a distribution

affects its entropy, all calculations are done after rescal-

ing the data to unit variance.

The entropy of the Gaussian reference distribution is

given by Rieke, Warland, van Steveninck, and Bialek
(1997):

HG ¼ 1

2
log2ð2per2Þ ¼ 2:074 bits ð7Þ

with variance normalized to one. Entropy of the proba-

bility distribution of the data is:

HðrÞ ¼ �
Z

pðrÞlog2ðpðrÞÞdr ð8Þ

where p(r) is the response probability density function

(pdf). For practical calculations Eq. (8) is discretized to:

HðrÞ ¼ �
XM
j¼1

pðrjÞlog2ðpðrjÞÞDr ð9Þ

where responses from n stimulus images have been

placed in M bins.

The value of H(r) will depend on the bin size Dr,
which in turn depends on the number of bins into which

the response range has been divided. The number of bins

therefore needs to be standardized, and this is done by
defining the number to be M ¼ ffiffiffi

n
p

, where n is the

number of images in the stimulus set. Expressing the

selectivity index SE (Eq. (6)) in terms of Eqs. (7) and

(9), we get:

SE ¼ 2:074þ
XM
j¼1

pðrjÞlog2ðpðrjÞÞDr ð10Þ
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If selectivity of a neuron is defined in terms of its re-

sponse entropy, then selectivity can be related to the mu-

tual information between stimulus and response:

Iðr; sÞ ¼ HðrÞ � HðrjsÞ
¼ �SE þ ðHG � HðrjsÞÞ

ð11Þ

H(rjs) is the conditional entropy of the response given

the stimulus, and is essentially entropy due to noise in

the system. Given fixed noise entropy H(rjs) (as well as
HG, fixed by definition), increasing selectivity decreases

mutual information. In other words, there is a conflict

between maximizing selectivity of a unit and maximizing
information transfer.

A drawback to the entropy measure is that each cell

needs to be tested with a large number of stimulus

images in order for entropy to be accurately estimated.

This is demonstrated in Fig. 3, which shows the entropy

of different-sized samples of a Gaussian distributed ran-

dom variable. Entropy asymptotically approaches the

theoretical value from below as stimulus set size in-
creases. In general, it is not possible to accurately deter-

mine the shape of a probability distribution from a small

data sample, particularly the tails, and that will affect

calculations of entropy.

A second potential problem with SE is that there are

situations where, unlike in Fig. 3, the entropy does not

converge as the size of the stimulus set increases. How-

ever, that will not be an issue for any probability distri-
butions encountered in this study.

A general point about non-parametric selectivity is

that its value depends not only on the receptive field

organization of a cell, but also on the particular stimulus

set used. Non-parametric selectivity is always relative to

the stimulus set, not absolute. This is not true of para-
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Fig. 3. Entropy of a Gaussian distribution as a function of the size of

the stimulus set. Entropy increases with the size of the stimulus set up

to an asymptote of 2.07, which is the theoretical value for a Gaussian

with unit variance. This demonstrates that under the entropy measure

of selectivity (Eq. (10)), a probability distribution will have an

artifactually low entropy if stimulus sample size is small. A stimulus

set of at least several dozen images is required to get a reasonable

estimate of this parameter.
metric selectivity, where the parameter of interest by

its nature defines the stimulus set.

2.4. Modeling

In addition to data from striate complex cells, we
looked at selectivities of model units. This allowed us

to expand the stimulus set beyond what was used exper-

imentally, and allows examination of the effects of vary-

ing receptive field properties in a well-defined manner.

Two models of complex cells will be presented, with

rather subtle differences in their receptive fields that lead

to large differences in their selectivities. The first is based

on Gabor functions. For this model, the complex cell re-
sponses are defined as the quadrature pair summation of

two subunits with Gabor receptive fields (Emerson,

Korenberg, & Citron, 1992; Szulborski & Palmer,

1990), at sine and cosine phase respectively:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGsin 
 SÞ2 þ ðGcos 
 SÞ2

q
ð12Þ

where C is the complex cell response, and G * S is the re-

sult of convolving a Gabor subunit with the stimulus

image. This class of energy model for complex cells is

widely used (Adelson & Bergen, 1985; Heeger, 1992; Oh-

zawa, DeAngelis, & Freeman, 1990; Pollen & Ronner,

1983; Spitzer & Hochstein, 1988). The Gabor subunits

resemble striate simple cells, except that they are not

half-wave rectified. Each Gabor subunit can be viewed,
therefore, as representing the pooled output of a pair of

simple cells with opposite contrast polarities.

The Gabor functions are sinusoidal plane waves with

spatial frequency f, orientation h, and phase /, under a
Gaussian envelope:

G/ ¼ e
�1

2
x0
rxð Þ2þ

	
y0
ry


2h i
sinð2pfx0 þ /Þ ð13Þ

where x 0 and y 0 are within the rotated coordinate
system:

x0 ¼ x cosðhÞ þ y sinðhÞ
y0 ¼ �x sinðhÞ þ y cosðhÞ

ð14Þ

Twenty-four model complex cells were created, having

four spatial frequency tuning curves and six orientations
per spatial frequency. Peak spatial frequencies were

f = [0.031,0.062,0.125, and 0.250] cycles/pixel, which

given 128 · 128 input images translates to [4,8,16,32]

cycles/picture. Orientations were [0�, 30�, 60�, 90�, 120�,
150�]. With respect to the Gaussian envelope, rx defines
the spatial frequency bandwidth, and was set to 0.65/f.

The ratio ry/rx defines the orientation tuning band-

width, and was set to 1.7. These appear to be physiolog-
ically realistic values (De Valois et al., 1982; Kulikowski

& Vidyasagar, 1986), producing a spatial frequency

bandwidth of 1.6 octaves and orientation bandwidth

of 33�, full width at half-maximum.
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Fig. 4. Subunit receptive field profiles for Gabor and Hilbert models

of complex cells. Although differing only slightly, they lead to very

different statistics in their responses to natural images. (A) Gabor

model: the two subunits had receptive fields consisting of a sine Gabor

function, and a cosine Gabor (pictured here). (B) Hilbert model: the

two subunits had receptive fields consisting of a sine Gabor function,

the same as before, and the Hilbert transform of a sine Gabor (pictured

here). This Hilbert transform receptive field resembles a cosine Gabor,

except that it integrates to zero while the Gabor does not. (C)

Difference between the cosine Gabor and the Hilbert transform

receptive fields (note scale).
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Sine and cosine Gabor functions are only approxi-

mate quadrature pairs. This reflects the fact that while

the sine Gabor integrates to zero, the cosine Gabor does

not, so that the two functions have different mean values

or different zero spatial frequency amplitudes. A quad-

rature pair should be identical other than a 90� phase
shift, and the Gabor pair does not fulfill that condition.

In observational terms, this means that complex cells

constructed from Gabor pairs are only approximately

phase invariant, showing a ripple in their responses as

a grating is drifted across their receptive fields.

In addition to the above Gabor model units, a second

set of 24 model complex cells was constructed that were

perfectly phase invariant. We call this the Hilbert model,
because synthesizing these units required the use of the

Hilbert transform. In this model, the two subunits were,

first, a sine Gabor the same as before, and second, in-

stead of a cosine Gabor, the Hilbert transform of a sine

Gabor. Given this pair of subunits, they were combined

in the same manner as previously:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGsin 
 SÞ2 þ ðHðGsinÞ 
 SÞ2

q
ð15Þ

where H( Æ ) represents the Hilbert transform. The Hil-

bert transform in essence takes the Fourier transform
of a waveform, shifts the phase by 90�, and then does

the inverse Fourier transform, producing a waveform

that is identical to the original other than the phase shift.

We used the ‘‘hilbert’’ command in the signal processing

toolbox of Matlab (www.mathworks.com), and mathe-

matical details of implementing the transform are given

in their documentation. Morrone and Burr (1988) have

previously used the Hilbert transform for modeling
receptive fields in the context of biological vision.

The Hilbert transform of a sine Gabor is almost iden-

tical to a cosine Gabor (Fig. 4), except that it integrates

to zero. The difference in the receptive field profiles is so

small it would be almost impossible to detect through

mapping experiments. The difference does show up

clearly, however, in their spatial frequency amplitude

spectra (Fig. 5) at low frequencies.
So, to summarize, we had two sets of 24 model com-

plex cells. One was based on the Gabor model and the

other on the Hilbert model, and the only difference

was a tiny change in the receptive field profile for one

of their two subunits.

The model units were tested with the same set of 157

images that had been presented to the actual complex

cells (example images shown in Fig. 2). During testing,
each image was centered on the model receptive field,

in the same manner as was done during the actual neu-

rophysiological experiments. Statistics were collected for

response probability distributions, and once it had been

verified that the model units had similar properties to

those seen in the data, they were presented with an ex-

panded stimulus set of 500 natural images (Fig. 6). Each
of the natural images was sampled multiple times by
each model unit, as the receptive field was shifted about

to different patches within the image. The total number

of sampled image patches ranged from 500 at the lowest

spatial frequency up to 24,000 at the highest frequency.

http://www.mathworks.com
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Fig. 6. Examples from among the 500 natural images presented to

model complex cells.
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High frequency units had smaller receptive field diame-

ters, allowing a greater number of image samples.
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Fig. 7. Histograms of response probability distributions for three

macaque complex cells. Cells were presented with a set of 157 synthetic

stimulus images. Also shown is the best-fit gamma function in each

case, and spontaneous activity (vertical dashed line). Both the kurtosis

(SK) and entropy (SE) measures of selectivity are given for each unit.

These examples show response distributions for units with high and

low selectivities, plus a distribution close to the median.
3. Results

Responses of an example striate complex cell to sev-
eral images are shown in Fig. 2. Clearly the response

magnitudes differ substantially from image to image,

and it is straightforward to examine the statistical distri-

bution of these responses over a set of inputs. In addi-

tion to differences in response magnitude there are

differences in response temporal waveforms, which will

not be considered here.

Response probability distributions for three example
neurons from the data are shown in Fig. 7. They are

positively skewed and are well fit by gamma distribu-
tions (Eq. (1)), also shown in Fig. 7, although no theo-

retical significance is placed on that description. These

three examples illustrate distributions with selectivities

near the maximum, minimum and median over all re-

corded units, with both the kurtosis SK (Eq. (2)) and en-

tropy SE (Eq. (10)) selectivity indices indicated in each
case.

The distributions of the selectivity indices for the 24

neuron in the data are shown in Fig. 8. Also given are

their median values, SK = 0.84 and SE = 0.23, indicating

that selectivities of units are typically substantially



Fig. 8. Distributions of kurtosis and entropy measures of selectivity

for 24 macaque complex units presented with synthetic images.
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Fig. 9. Negative correlation in the data between selectivity and the
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greater than for the Gaussian reference distribution

(which would have SK = SE = 0).

There was a negative correlation between the median

activity of a neuron and selectivity (Fig. 9). The least ac-

tive neurons were the most selective. However, the level

of activity in itself does not determine selectivity. For
example, a Gaussian distribution with a high mean or

a low mean both indicate exactly the same selectivity.

There must be a change in the shape of the response dis-

tribution that correlates with activity, and in this case

the distributions change shape by becoming more ske-

wed as mean activity drops. Highly skewed distributions

register as more selective under our measures. Increased

skewness as the mean decreases is a general property of
random variables whose variances are large relative to

their means, and which are also constrained to have only

non-negative values (as is the case with firing rates). The

relationship shown in Fig. 9 is an indication that high

selectivity measures can arise from distortions in the

shape of response probability distributions due to non-

linearities in the system, rather than the sort of linear

transforms discussed by Field (1994), as will be dis-
cussed further below.

3.1. Selectivity in model complex cells

The model complex cells had positively skewed re-

sponse probability distributions, and negative correla-

tions between response magnitude and selectivity, both

features of the data. Fig. 10 shows the distributions,
for synthetic images, of the kurtosis and entropy selec-

tivity indices under the Gabor model (Eq. (13)). and

the Hilbert model (Eq. (15)). The median selectivities

for the two models and for the data, again for synthetic

images, are summarized in Table 1. The table shows that

the selectivity of the data is bracketed by the two mod-

els, being greater than the Gabor model and less than

the Hilbert model, but closer to the Gabor model. Being
intermediate to the two models in this manner suggests

that actual complex cells have subunits that do not inte-

grate to zero, with the discrepancy from zero being

somewhat smaller than for Gabor model units. An

implication of this is that actual complex cells should

not exhibit perfect phase invariance but show a ripple

response to drifting gratings. This is in fact an observed

feature of complex cells (reviewed by Spitzer & Hoch-
stein, 1988). Higher selectivity when receptive fields inte-

grate to zero, as shown in Table 1, has previously been

noted by Baddeley (1996a) in modeling of linear units

resembling retinal ganglion cells.

Having verified that the modeling provides a reason-

able match to the data for synthetic stimulus images, we

can now look at model responses to natural images.

These are also shown in Table 1. Selectivities of model
complex cells are higher for natural images than

synthetic ones (with the exception of one condition).
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These are analogous to selectivity measures for the data shown in Fig. 8. (A) Gabor model. (B) Hilbert model.

Table 1

Selectivity measures for complex cell experimental data and the two

models of complex cells

Kurtosis Entropy

Synthetic Natural Synthetic Natural

Gabor model 0.7 2.2 0.15 0.08

Data 0.8 {2.8} 0.23 {0.24}

Hilbert model 1.9 7.1 0.37 0.53

Results for both synthetic and natural images are included. Values in

brackets are estimated by linear interpolation between the Gabor and

Hilbert models, weighed in accord with the results for synthetic images.
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Selectivities of biological complex cells to natural images

were estimated by performing a linear interpolation be-

tween the Gabor and Hilbert models, weighed by the

synthetic image results. The estimated selectivities are
given within brackets in Table 1. The complex cell kur-

tosis estimated here for natural images, 2.8, is not far

from to the value of 4.1 reported by Vinje and Gallant

(2000, 2002) for macaque complex cells.

3.2. Spatial frequency dependence of selectivity

Selectivities are higher for the Hilbert model than the
Gabor model, regardless of which measure is used

(Table 1), and the question arises why that is. To exam-

ine this issue, we start by plotting the response probabil-

ity distributions separately for model complex cells

tuned to different spatial frequencies. At each spatial fre-

quency, responses for units tuned to all orientations
were pooled, as we did not note interesting orientation

specific effects. This is done for the Gabor model in

Fig. 11A, and the Hilbert model in Fig. 11B, in both

the cases using natural images as inputs.

Examination of Fig. 11 shows that there is a large dif-

ference between the models in their response probability

distributions for different spatial frequencies. Response

distributions of the Gabor model are almost independ-
ent of spatial frequency tuning, while those of the Hil-

bert model show distributions whose skewness (and

selectivities) increase sharply for units tuned to higher

spatial frequencies.

A possible explanation for this difference arises when

one examines the spatial frequency amplitude spectra of

the stimuli (Fig. 12), and the spectra of the Gabor and

Hilbert model subunits (Fig. 5). The image amplitude
spectra (both natural and synthetic) exhibit a 1/f fre-

quency dependence, as has been widely reported (for

example, Baddeley, 1996a; Field, 1987; Ruderman &

Bialek, 1994). The stimulus amplitudes at low spatial

frequencies are enormous compared to those at high fre-

quencies. Although it is the phase spectrum and the

alignment of phases to produce localized forms that lead

to the important structures in natural images, the ampli-
tude spectrum can be used as an index indicating stimu-

lus intensity at different spatial scales, when averaging

over a large set of image samples.

Continuing development of the argument here, the

Gabor model includes subunits with significant sensitiv-

ity to low spatial frequencies, including zero frequency,
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and this low frequency sensitivity is largely independent

of the position of the peak. Given a 1/f input stimulus,

the response distributions of such units will be domi-

nated by the strong, non-specific signal at the left tail
of their frequency tuning, rather than the weak signal

at their peak. We therefore see Gabor model responses

in Fig. 11A that are independent of the tuning curve

peak, and with relatively low selectivity.

The Hilbert model, on the other hand, incorporates

subunits that have reduced sensitivities to low spatial

frequencies and are completely insensitive to zero fre-
quency (Fig. 5). Without sensitivity to the strong signal

at frequencies near zero, Hilbert response distributions

are more dependent on the peak location of their spatial

frequency tuning curves than Gabor distributions
are. As spatial frequency tuning increases, localized

structures at those spatial scales become increasingly

rare, and responses of Hilbert units show increases

selectivity.

As actual complex units have properties intermediate

between the Gabor and Hilbert models (Table 1), we

predict that their selectivities will show moderately spa-
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tial frequency dependence, in between that which ap-

pears in Fig. 11A and B.

3.3. Response distribution tails

Probability distributions associated with high selec-

tivity or sparseness are often described as being ‘‘hea-
vy-tailed’’, so we shall examine tail properties here.

Events falling on the tails are by definition rare, so it

is difficult to characterize them with the small samples

typically available from the neurophysiological data.

However with a model, such as we developed for com-

plex cells, this limitation is bypassed. Heavy-tailed dis-

tributions have been used to model a variety of

systems in economics, communications engineering,
and physics (Adler, Feldman, & Taqqu, 1998), following

the seminal work of Mandelbrot (1963), for situations in

which there is an occasional large extremal event mixed

in with the usual small events.

The tail of a distribution is defined as the complement

of the cumulative distribution function F rðrÞ ¼ 1� F ðrÞ
(Bryson, 1983). A ‘‘heavy-tail’’ is one that decreases

more slowly than some reference distribution. An expo-
nentially decaying tail is commonly used as the dividing
line between light-tailed and heavy-tailed distributions.

This would classify the Gaussian distribution (whose tail

is the square of an exponential) as light-tailed, and dis-
tributions with power law tails (the Cauchy distribution

for example) as heavy-tailed because they decay much

more slowly.

We examined the tail of the response distribution

showing the highest selectivity, that coming from a high

spatial frequency Hilbert model complex cell (Fig. 11B,

bottom panel). A semi-log plot of its right tail yields a

straight line (Fig. 13), indicating that it does not follow
a power law but rather is exponentially decaying. This is

consistent with previous reports of exponential tails for

striate simple cells and inferotemporal units (Baddeley

et al., 1997; Treves, Panzeri, Rolls, Booth, & Wakeman,

1999). The response distribution of the model complex

cell is therefore not heavy-tailed, despite being leptokur-

totic. Although high kurtosis arises when a distribution

is heavy-tailed, it can also arise if the distribution is thin-
tailed and skewed. Skewness and not heavy-tailedness

appears to be the source of the high measures of selectiv-

ity seen in complex cells, judging from these modeling

results.

3.4. Ergodicity: the relationship between selectivity

and sparseness

Another issue is the relationship between the distribu-

tion of responses of single units across time when pre-

sented with a set of images (selectivity) and the

distribution of responses within a neural population

measured simultaneously (sparseness). If neural re-

sponses are presented on a matrix in which each column

represents a different neuron and each row represents a

different stimulus image, the question is how do re-
sponse distributions compare if they are measured along

columns (selectivity) or along rows (sparseness). Why be

concerned with this issue? As a technical matter, it�s far
easier to isolate units one at a time while presenting each
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Fig. 14. Comparison of selectivity and sparseness in Gabor model

units. Responses are from a population of 126 model units with

various orientation and spatial frequency tunings, when presented with

natural images. (A) Histogram with 10 bars showing response

distribution of individual units presented with a series of images

(selectivity). Each color indicates a different unit, and the black outline

bars show the average distribution over all units. (B) Histogram

showing distribution of responses within an entire population meas-

ured simultaneously (sparseness). Each color corresponds to a different

stimulus image presented to the population. The black outline bars

show the average distribution of the population over the entire set of

stimulus images. Response is on a relative scale with the optimal

stimulus producing a value of 1.0. (The crowding of colored bars

causes them to bleed into white spaces between them, making the solid

colored areas appear taller than they actually are.)
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one with many stimuli, rather than record an entire pop-

ulation simultaneously, even though the population

sparseness may be the quantity of theoretical interest.

Therefore it is useful to understand the relationship be-

tween selectivity and sparseness. For convenience in the

following discussion, we shall use the terms ‘‘selectivity’’
and ‘‘sparseness’’ to refer to the response distributions

themselves, and not just summary statistics on those dis-

tributions such as entropy or kurtosis.

If the selectivities for individual units are the same as

the population sparseness, we call the neural system erg-

odic, by analogy with the concept from statistical

mechanics. To refine this a bit more, if the selectivity

of each individual unit is the same as average population
sparseness, then the system is strongly ergodic. Obvi-

ously under strong ergodicity all units have the same

selectivity. It should be noted that units can respond

to quite different sets of stimuli and yet still have identi-

cal selectivities (response probability distributions), as

we are defining the term. If individual units have differ-

ent selectivities, but the average selectivity is the same as

the average population sparseness, then the system is
weakly ergodic. Weak ergodicity necessarily occurs if re-

sponses of units are uncorrelated.

When examining ergodicity in simulations here, the

population size of model units was expanded from the

previous 24 to 126 by increasing the number of different

spatial frequency and orientation tunings included in the

population. Fig. 14 shows response probability distribu-

tions for Gabor model complex cells plotted both ways,
by individual units (selectivity) and by population

(sparseness). Fig. 15 shows selectivity and sparseness

for Hilbert model units.

The top panel of Fig. 14 shows response distributions

for individual units (selectivities). The distributions are

displayed with histograms having 10 bars. Each color

represents the responses of a different unit. By following

a color across the histogram, one can see the response
distribution of a particular unit when presented with

the entire stimulus set. Low spatial frequency units are

at the blue end of the spectrum, and high frequency

units are at the red end. The black outline around each

bar indicates the average distribution over all units.

The bottom panel shows response distributions

across the population (sparseness) for individual stimuli.

The population always remains the same, and each color
represents the response distribution of that population

to a different stimulus image. The black outline bars

show the average distribution of responses for the pop-

ulation over the stimulus set (average sparseness). There

is high variability for the different colors within each his-

togram bar, as the response distribution of the popula-

tion jumps about with each individual image.

The black outline bars in the two panels are practi-
cally identical, which indicates that the average selectiv-

ity of individual units is the same as the average
sparseness of the population. That satisfies the condition

for the system to be weakly ergodic. Looking more clo-

sely at the response distributions for the individual

Gabor complex cells in Fig. 14A, they all appear to be
very similar regardless of spatial frequency tuning. That

is indicated by the flatness within each histogram bar of

all the different colors. Therefore, the selectivity of each

individual unit matches the average sparseness of the

population. Thus, Gabor model complex cells have re-

sponse distributions that are strongly ergodic.

Moving from Gabor units to Hilbert units, Fig. 15 is

analogous to Fig. 14. The near identity of the black out-
line histogram bars in the top and bottom panels of Fig.

15 show that Hilbert units satisfy weak ergodicity, as did

Gabor units. In other words, average selectivity is the

same as average sparseness. However, unlike Gabor
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units, Hilbert units each have different response distribu-

tions as a function of spatial frequency, indicated by the

fact that histogram bars in Fig. 15A are not flat for dif-

ferent colors. Therefore, Hilbert units are not strongly

ergodic.

Actual complex cells are expected to have properties

intermediate between the Gabor and Hilbert models

(again referring to Table 1). Therefore, we predict they
will be weakly ergodic but not strongly ergodic. This

means that the average selectivity of complex cells will

be equal to average sparseness across the population,

but that the selectivity of each individual complex cell

will not match average sparseness.
4. Discussion

Non-parametric selectivity measures were calculated

from both striate complex cell data and model complex

cells. These indicated average selectivities of individual

units that were moderately greater than that of a Gaus-

sian reference distribution (Table 1).

The numerical equivalence between selectivity (re-

sponse distributions of individual units across time when
presented with a sequence of stimulus images) and
sparseness (response distributions across all units in a

population measured simultaneously), which we call

ergodicity, was shown in simulations of model cells

(Fig. 14 and 15). This model prediction of ergodicity re-

mains to be confirmed by experimental studies.

If one accepts the existence of ergodic equivalence,
then the selectivity measures of individual units in Table

1 can also be considered as average sparseness measures

of the population as a whole. That is, populations of

striate complex cells would be expected to show a mod-

erate degree of elevated sparseness relative to a Gaus-

sian reference distribution. However, we shall argue

below that such sparseness would not necessarily indi-

cate efficient coding.

4.1. Comparison with previous models

Our simulations indicating the equivalence of selec-

tivity and sparseness are in complete disagreement with

the simulations of Willmore and Tolhurst (2001), who

found no relation between the two. It is not clear why

this difference exists, particularly as there are conditions
under which selectivity and sparseness are mathemati-

cally required to be identical, as Földiak (2002) has

pointed out. One difference between our methods is that

they measured selectivity/sparseness indices for each

individual response distribution and then averaged the

indices, whereas in Figs. 14 and 15 we are averaging

the probability distributions on which sparseness meas-

urements are based rather than averaging the sparseness
measurements themselves.

Three factors were found to influence non-parametric

selectivity in our models of complex cells. The first is

whether the linear subunits integrate exactly to zero or

not (or equivalently, whether they have a DC response

or not). Complex cells with subunits that integrate to

zero have higher selectivity. The second is location of

the peaks of spatial frequency tuning curves of the com-
plex cells. Units tuned to higher spatial frequencies are

more selective, again provided receptive fields integrate

to zero. The third is average response of the complex

cells over the entire stimulus set. Units with low average

responses are more skewed and produce higher selectiv-

ity measures.

Baddeley (1996a) has previously reported, from simu-

lations, that linear, circularly-symmetric units with
inhibitory surround, similar to retinal ganglion cells,

produce higher selectivity if the receptive fields integrate

to zero. We can confirm that this property still holds

true for oriented, non-linear, phase-independent com-

plex cells. However, we have offered a different explana-

tion for the origin of this effect. Baddeley (1996a)

ascribed it to non-stationarity in the image statistics,

whereas our explanation focuses on the 1/f nature of
the image spatial frequency spectrum (in conjunction

with alignments in its phase spectrum). Baddeley (1996a)
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also reported that for his circular linear units, higher

spatial frequency tuning led to higher selectivity, which

we also see in complex cells. Again, however, the expla-

nations for these effects differ, with Baddeley ascribing it

to image non-stationarity while we offer an explanation

in terms of the 1/f image spectrum.
Although the entropy or kurtosis values we observed

in model complex cells indicates a moderate degree of

sparseness, the modeling indicates that sparseness meas-

ures are very sensitive to slight changes in subunit recep-

tive field profiles, with higher sparseness for receptive

fields that integrate to zero.We know from data in the lit-

erature (Spitzer & Hochstein, 1988) that receptive fields

do not integrate to zero, based on observations of a resid-
ual ripple in complex cell responses to drifting gratings

which indicate imperfect phase invariance. This suggests

that evolutionary pressure to create very high sparseness

in these units is weak, or constrained by other objectives.

Furthermore, the exponential tails seen in the re-

sponse distributions of model complex cells (Fig. 13)

do not lead to high sparseness values compared to other

possible shapes, such as a power law tail. Exponential
tails have also been noted in V1 simple cells and infero-

temporal cells (Baddeley et al., 1997; Treves et al., 1999),

indicating that this property is commonplace and per-

haps ubiquitous in visual cells. On the other hand,

power law tails, leading to much higher sparseness, have

never been reported. Rather than being associated with

high sparseness and information efficiency, exponential

tails can be associated with energy (metabolic) effi-
ciency (Baddeley, 1996b; Baddeley et al., 1997), as they

maximize output entropy for a fixed firing rate. See

Laughlin and Sejnowski (2003) for a more general dis-

cussion of metabolic efficiency as a constraint in brain

organization.

The fact that minor changes in the receptive field

organization underlying complex cells can lead to large

changes in sparseness/selectivity raises the possibility
that those parameters may be under dynamic control.

For example, it is possible that attention can cause slight

adjustments in the receptive field structure leading to a

change in selectivity, although such an effect has not

been reported.

4.2. Comparisons with previous experimental data

Vinje and Gallant (2000, 2002) have previously re-

ported data on sparseness in macaque striate complex

cells. On our terminology, they were actually measuring

non-parametric selectivity rather than sparseness. How-

ever, by the ergodicity principle that our modeling indi-

cates, selectivity is equivalent to sparseness. Our data

leads to similar estimates of selectivity in complex cells

to those of Vinje and Gallant.
Vinje and Gallant (2000, 2002) further reported that

selectivity in macaque striate complex cells increases
when the stimulus diameter is expanded to include the

non-classical receptive field surround. Based on the pre-

sent study we can identify two possible mechanisms that

may underlie this effect. The first relates to the negative

correlation between selectivity and the average activity

level (Fig. 9). The observed increase in selectivity for
broad stimuli may simply be secondary to non-specific

inhibition from the non-classical surround, which would

reduce the average activity level of the unit. We know

from Gallant, Connor, and Van Essen (1998) that the

non-classical surround does have an inhibitory effect

on activity in these units. The second possibility is that

the surround affects the receptive field profiles of the

complex cell subunits so that they more closely integrate
to zero. As we have seen, changing the receptive fields in

this manner greatly increases selectivity.

The first mechanism, lateral inhibition, is so non-spe-

cific and ubiquitous that increased sparseness resulting

from it could easily be an epiphenomenal side effect

rather than a deliberate means of increasing coding effi-

ciency. On the other hand, if the second mechanism, fine

tuning of receptive field profiles, were shown to occur,
that could more convincingly be interpreted as a pur-

pose-built mechanism for increasing efficiency.

A fundamental issue in which we would disagree with

Vinje and Gallant is the idea that high sparseness meas-

ures calculated from data are necessarily an indicator of

statistically efficient coding in the system. Baddeley

(1996a) and Treves et al. (1999) have already established

that high sparseness measures can arise for reasons
unrelated to coding efficiency, and this is a point we

would like to expand on.

On one explanatory level, excess sparseness in com-

plex cells arises because they have response distributions

that are skewed (but not heavy-tailed). The skewness in

turn arises from the squaring non-linearity by which

subunit responses of complex cells are combined (Eq.

(12)). (To give a simple example, if a set of normally dis-
tributed random numbers are squared, the resulting

probability density function will be skewed and exhibit

large excess kurtosis.) Thus, we see high sparseness

measures arising from non-linear distortions in the neu-

ral response distributions, rather than the linear trans-

forms that underlie information theoretic explanations

of the origins of sparseness (Field, 1994). It is not self-

evident that sparseness measures arising from such
non-linear probability distortions need to be interpreted

in terms of efficient coding. Rather, the non-linearities

seen in complex cells could be involved in the implemen-

tation of image processing algorithms, and unrelated to

issues in statistical efficiency.

4.3. Implications for the efficient coding hypothesis

It may be objected that perhaps the non-linear distor-

tions are a means of implementing the high sparseness
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required for efficient coding. However, a feature of the

squaring non-linearity underlying complex cells is that

it is an information-losing transform. Information the-

ory deals with the reliability and efficiency of informa-

tion transmission in the presence of noise, and the

significance of any deterministic information-losing
transforms within the system is orthogonal to the con-

cerns of the theory, other than as arbitrary external con-

straints that an information theoretic analysis must deal

with. Information theory will not predict nor explain the

nature of information-losing transforms within the vis-

ual system, for example why complex cells implement

a particular non-linearity and not some other. Yet it

seems likely that understanding the functional role of
information-losing transforms will prove central to

understanding vision, as the organism creates represen-

tations that highlight aspects of the environment that

are of ecological significance.

Simoncelli and Olshausen (2001) appear to recognize

this problem, presenting a weakened form of the efficient

coding hypothesis in which information is not preserved.

Efficient coding is in that case only relative to whatever
information is spared at each stage. ‘‘The hypothesis

states only that information must be represented effi-

ciently; it does not say what information should be rep-

resented. . .’’, as they say. Obviously, identifying what

information is being represented must come prior to

determining if that information is efficiently represented.

This reinforces the point we are making, that it is

premature to interpret high sparseness measures calcu-
lated from complex cell data as indicative of efficient

coding, as Vinje and Gallant do, without understand-

ing the requirements of the visual algorithms being

implemented.

If one accepts that high sparseness measures can oc-

cur for reasons unrelated to information efficient coding,

it still remains possible to retain some suggested benefits

of sparse coding without invoking information-theoretic
optimality arguments for its origin. For example, the

ability of sparse codes to increase the storage capacity

of associative memory under some models (Baum, Moo-

dy, & Wilzek, 1988; Palm, 1980; Treves & Rolls, 1991)

remains whether the sparseness arises from informa-

tion-efficient transforms or from information-losing sys-

tem non-linearities. Sparseness also has value in

reducing energy costs regardless of the other benefits.
In more general terms, the criticism here of visual

models that center on efficient coding and redundancy

reduction is that they attempt to explain properties of

receptive fields purely in terms of the statistical proper-

ties of the input stimulus, without considering the goals

of the organism for which the visual apparatus was con-

structed. To understand why V1 has particular receptive

fields, it may be necessary to look not only at the struc-
ture of the stimulus, but also at the structure of the high-

er visual areas into which V1 feeds, analyze what these
higher areas are trying to accomplish, and determine

what kind of inputs best serve those ends (Lehky & Sej-

nowski, 1999). Including considerations of these higher

areas may produce visual representations that not only

reflect image statistics but also incorporate the require-

ments for visuomotor coordination and other behaviors
the organism needs in order to survive.

The idea that a theory of sensory processing can be

developed purely by examining the internal structure

of the stimuli without any reference to the organism as

an integrated sensorimotor system has been criticized

in particular by those espousing an ‘‘embodied’’ view-

point (for example, see Churchland, Ramachandran, &

Sejnowski, 1994; Clark, 1997; Lakoff, 1987; Merleau-
Ponty, 1945; Varela, Thompson, & Rosch, 1991; Wino-

grad & Flores, 1987). Perhaps a broader way of saying

the same thing is that sparse coding is motivated by is-

sues in information theory, and as with all information

theoretic models it is fundamentally concerned with

the syntax of the signal rather than semantics or ‘‘mean-

ing’’. Ultimately it may not be possible to have a satis-

factory theory of the brain without confronting the
constellation of issues relating to meaning (of which

the problem of categorization is a part). The basic point

here is that by focusing on issues arising from informa-

tion theory (such as sparse coding), one is led to ask fun-

damentally the wrong kinds of questions concerning

visual processing at higher levels.

It is important to emphasize that what is being chal-

lenged here is the use of information theoretic optimality
principles as a core explanation of why sensory systems

are structured the way they are, and not the application

of information theory as a tool for data analysis per se.

Information theoretic analyses of data (for example,

Optican & Richmond, 1987; Rolls, 2003) can lead to

interesting insights on sensory processing without mak-

ing the claim that the system is optimized along infor-

mation theoretic principles.
In view of the above criticisms, explanations of recep-

tive field structure in terms of information theoretic

measures of efficient coding are most convincing when

confined to peripheral parts of sensory pathways, such

as the retina and lateral geniculate nucleus, which

involve linear signal transforms and reduced contamina-

tion by cognitive (non-stimulus) feedback. The presence

of information-losing non-linearities at higher levels,
such as in the complex cells studied here, indicate other

factors in addition to information theory that should be

taken into account in order to understand receptive

fields.
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