Noise in neurons is message dependent
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Neuronal responses are conspicuously variable. We focus on one
particular aspect of that variability: the precision of action poten-
tial timing. We show that for common models of noisy spike
generation, elementary considerations imply that such variability
is a function of the input, and can be made arbitrarily large or small
by a suitable choice of inputs. Our considerations are expected to
extend to virtually any mechanism of spike generation, and we
illustrate them with data from the visual pathway. Thus, a simpli-
fication usually made in the application of information theory to
neural processing is violated: noise is not independent of the
message. However, we also show the existence of error-correcting
topologies, which can achieve better timing reliability than their
components.

neuronal reliability | temporal coding | information theory | error
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Brains represent signals by sequences of identical action
potentials or spikes (1). Upon presentation of a stimulus,
a given neuron will produce a certain pattern of spikes; when
the stimulus is repeated, the pattern may repeat spike for spike
in a highly reliable fashion, or may be similar only “rate-wise,”
or some spikes may be repeatable and others not. If individual
spikes can be recognized and tracked across trials, then their
timing accuracy can be ascertained unambiguously; this is not
always the case. The existence of repeatable spike patterns and
the reliability of their timing changes not only from neuron to
neuron, but even for the same neuron under various circum-
stances. Bryant and Segundo (2) first noticed (in the mollusk
Aplysia) that spike timing accuracy depends on the particulars
of the input driving the neuron. This intriguing property has
received renewed attention, notably among those searching for
experimental evidence supporting various theories of neural
coding (3, 4). In a study of the response of pyramidal neurons
to injected current (3) the temporal pattern of firing was found
to be unreliable when the injected current was constant, but
highly reliable when the input current was “noisy”” and con-
tained high-frequency components. This study showed explic-
itly the difference between the irregularity of the spike pattern
(which was irregular in both cases) as opposed to the reliability
or accuracy of spike timing, and it also highlighted the
connection that “natural” stimuli are noisy and contain sharp
transitions. Similar results have been obtained from in vivo
recordings of the H1 neuron in the visual system of the fly
Calliphora vicina (4): constant stimuli produced unreliable or
irreproducible spike firing patterns, but noisy input signals
deemed to be more “natural” and representative of a fly in
flight yielded much more reproducible spike patterns, in terms
of both timing and counting precision. Although some aspects
of the last study have been challenged recently (5), the
phenomenon of different reliabilities for various inputs was
reaffirmed: see, e.g., figure 1 in ref. 5. Thus one concludes that
similar observations of the timing precision of spikes can be
made in very different types of neurons under vastly different
conditions, and that this must be a very universal, almost basic
characteristic of neuronal function. We shall now show how
these experimental observations follow from rather general

and elementary considerations, and discuss the possible im-
plications for brain function and architecture.

Stochastic Spiking Models. The essence of this phenomenon can
be demonstrated easily in toy models. A simple example is the
leaky integrate-and-fire (I-F) model (6), which assumes the
neuron is a (leaky) capacitor driven by a current which simulates
the actual synaptic inputs. We add membrane fluctuations
representing several internal sources of noise (cluttering of ion
channels, synaptic noise, etc.) to obtain a system described by the
following Langevin (7) equation:

CV = —gV+ 1) + &¢), [1]

where C is the cell membrane capacitance, V' is the membrane
potential, gl is the leakage term (g is a conductance), I(¢) is the
input current, and &) is Gaussian noise, (£(f)) = 0 with
autocorrelation (&(t)&(t')) = od(t — t'); when the potential
reaches the threshold V) an action potential is generated and the
system returns to the equilibrium potential V., here set arbitrarily
to zero.

Fig. 1 shows the results of a numerical simulation of Eq. 1 in
response to two different signals,® in both cases in the presence
of identical “internal” noise. Following refs. 3-5, Fig. 1 Left
shows a time-independent input and the neuronal responses to
repeated stimulation, whereas Fig. 1 Right ensues from a “noisy”
input and its responses. When I(f) contains high-frequency
components (Right), spikes are clustered more tightly to the
upward strokes of the input and overall there is less trial-to-trial
variability than in the time-independent case. The phenomenol-
ogy described in Fig. 1 captures the main feature that renewed
interest in this subject: that apparently more “noisy” (in the sense
of “severely fluctuating”) inputs can generate less variable
responses.

By concentrating on these two extreme stimuli, these studies
have somewhat obscured an issue that is central to the variability
phenomenon: the relationship of the output to the timescale or
timescales over which the input itself varies. The constant
stimulus can be thought to have no timescale, or at best, just a
timescale since onset, whereas in principle the noise process has
indefinitely fast timescales. Thus the two extreme cases under
discussion have timescales outside the range of interaction with
physiological processes.

A simple dimensional argument shows that timing variability
depends on the characteristic timescale of the input. As a
consequence of noise, the neuron’s membrane potential will
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Fig. 1. Rapidly fluctuating (Right) inputs produce more reliable output

spikes than do time-independent stimuli (Left). (Top) Input stimulus—/(t) in
Eq. 1. (Middle) The 500 responses to the stimulus; the occurrence of each spike
is denoted with a dot. (Bottom) The peristimulus time histogram describing
the rate, p(t), at which spikes are generated in response to the stimulus /(t).

have fluctuations of a characteristic size (or root mean square)
AV. To translate this AV into a timing noise Az, we have to scale
the potential noise by something having units of Az/AV; the most
natural such quantity at hand is the inverse of the potential’s time
derivative.

While the distribution of the derivative of the potential is a
reasonable measure of the degree of reliability of a particular
input, one can see from a geometrical argument that the
derivative of the potential at the particular time in which the
potential crosses the threshold is a better estimator of stimulus
reliability. The uncertainty in firing time is essentially the time
during which the membrane potential is at a distance from the
threshold smaller than the value of the voltage noise, and so is
scaled by the derivative at this particular moment. Thus, the
faster the voltage approaches the threshold (in the vicinity of the
threshold), the more reliable the timing of the spike will be. The
statement captures much of the phenomenology in refs. 2 and 4,
and in our own data, as we will show.

We proceed now to apply this method of estimation to the
situation shown in Fig. 1. A rapidly fluctuating signal was
constructed,’ and the times at which spikes occurred were
determined first for the deterministic condition (i.e., o = 0), and
subsequently for several hundred stochastic realizations [i.e.,
with identical /(¢) but with different stochastic realizations of the
noise term in Eq. 1]. At the same time the voltage derivative
preceding each spike was computed over the prior 50 time steps.
The fluctuating character of I(¢) (as illustrated in Fig. 1 Top
Right) offers the opportunity to explore a wide range of dV/dt
at threshold crossings. To estimate the precision of spike timing
we define an index of “temporal jitter” as follows: it is the
absolute difference between the time at which a spike is gener-
ated in the noise-free simulation and that of the corresponding
nearest spike for the stochastic realization, averaged over real-
izations, and over all spikes that occur within a dV’/dt interval of
0.1. This quantity is plotted in Fig. 2. The data points in Fig. 2
are scattered around the expected (dotted lines) inverse rela-
tionship between the temporal jitter of the spike and the speed
at which the voltage crossed the threshold. The trajectories
plotted in both Insets help to visualize the geometrical argument
already discussed: inputs that rise more rapidly to the membrane
potential threshold produce less variable spike timing.
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Fig.2. Computed mean spike temporal jitter (and SEM) as a function of the
estimated membrane potential’s dV/dt. Estimates are plotted for two noise
variances: o = 0.01 (O) and ¢ = 0.02 (0). The expected inverse-law fit (with
exponent ~0.35) is depicted with dotted lines. The examples in the Insets
illustrate two density distributions of spiking times resulting from relatively
slow (Inset A) or relatively fast (Inset B) dV/dt threshold crossings. For each
case, below each histogram, a few typical trajectories are also plotted, show-
ing the membrane potential preceding the threshold crossing.

The same basic phenomenon will affect any model of spike
generation in which the noise in the voltage-like variable is
translated into jitter of its threshold crossings. To provide for a
specific example, we choose a widely used model of excitable
media with continuous dynamics, the FitzHugh-Nagumo model
(FHN) with additive stochastic forcing (8), described by the
following Langevin system:

[2]
[3]

V=V-V3/3-W+I{) + &)
W= ¢V +a—bW).

The variable V' is the fast voltage-like variable, W is the slow
recovery variable; a, b, and ¢ are constant parameters, and &()
is a zero-mean Gaussian white noise of intensity D. According to
these equations, after a spike the recovery produces an absolute
refractory period during which a second spike cannot occur,
followed by a longer relative refractory period during which
firing requires stronger perturbations.

As previously argued, it is biologically reasonable to assume
that noise affects the voltage-like variable. Thus, according to
our argument, a higher steady input will result in a faster
approach to the threshold crossing and therefore will reduce the
probability of an untimely crossing. This expectation is con-
firmed in Fig. 3, where the distributions of periods are plotted for
two input amplitudes. Note the large change in variance (1.5 to
2.34, 56%) for comparably small change in the average period
(36.4 t0 39.1, 7%) in going from high to low input; also note that
the low-input distribution has a supraexponential tail. For
comparison, the distribution of interspike intervals correspond-
ing to the integrate-and-fire model with constant input is shown.
In both cases, the distribution for high input tends to a Gaussian
(parabola on a semilog plot), whereas the low input has an
exponential tail (linear on a semilog plot) as expected for
Poisson-like statistics. Notice that even though this phenomenon
will affect more strongly systems with zero-frequency quiescent-
to-firing bifurcations, given the longer time to integrate fluctu-
ations at low input (i.e., the system can evolve near a homoclinic
orbit), the example presented here shows that it also affects
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Fig.3. First passage time distributions for the FitzZHugh—-Nagumo (Left) and

integrate-and-fire (Right) models, forced with constant input. In both panels,
X corresponds to high input and O to low.

non-zero-frequency transitions like the Hopf bifurcation present
in the FitzZHugh-Nagumo model.

Experimental Results. Thus, in neural data, one should expect
to find that the output noise generically depends on the structure
of the input. Experiments discussed next demonstrate the rele-
vance of this observation for brain function. We recall that an
assumption usually made in the application of information
theory to neurons is that the noise introduced by the commu-
nication channel is independent of the message being transmit-
ted, and now we explore to what extent this assumption is valid
in real neural data.

The experimental methods were as described by Alonso and
Martinez (9). Briefly, cats (2.5-3 kg) were anesthetized with
ketamine (10 mg/kg) and thiopental sodium (20 mg/kg; main-
tenance 2 mg/kg per hr, iv.) and paralyzed with Norcuron
(Organon; 0.2 mg/kg per hr, iv.). Temperature (37.5-38°C),
EKG, EEG, and expired CO; were monitored throughout the
experiment. Pupils were dilated with 1% atropine sulfate and the
nictitating membranes were retracted with 10% phenylephrine.
A multi-electrode matrix was used for the cortical recordings.
Recorded signals were collected and analyzed by a computer
running Datawave Systems software (Broomfield, CO).

The result is presented in Fig. 4, where different visual stimuli
(i.e., the four messages) were presented to an anesthetized cat
while electrophysiological recordings were made in the lateral
geniculate nucleus, which is the second stage of processing in the
visual pathway.

The raster plot in Fig. 44 shows the response to a moving bar
with high contrast and high speed, and Fig. 4B shows the
responses to a low-contrast bar moving at low speed; both results
are shown in a window of 200 ms centered at the peak of the ON
response. The responses in A clearly display a higher temporal
precision than those for the condition in B. Two further condi-
tions were also presented, for high contrast and low speed, and
for low contrast and high speed. In the Inset of Fig. 4 we quantify
the noise for the four messages as the jitter of the response onset,
which we define as the average of the absolute value of the
position with respect to the mean of the first spike in each trial.
The messages include two conditions for the velocity and two for
the contrast. For each velocity condition, the high contrast is
more reliable than the low one: 8.4 ms vs. 22.1 ms, and 16.8 ms

vs. 23.8 ms. Note, however, that the high-contrast/high-speed
and low-contrast/low-speed stimuli, although they have a very
similar spike response (4.17 vs. 3.86) have the largest difference
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Fig. 4. Experimental example showing that different “messages” elicit

different noise (i.e., spike temporal jitter). Results were gathered from re-
cordings in cat lateral geniculate nucleus, where neuronal action potentials
are recorded in response to the presentation of a moving bar with different
contrast and speed. Inset in A shows, for the conditions tested, the temporal
jitter versus average number of spikes (collected during the window of 200
ms); @ corresponds to low contrast/high speed; +, to high contrast/high
speed; ¥, to low contrast/low speed; and A, to high contrast/low speed.
Notice the data from moving bars of different contrast originating very
different jitter. The raw data for two of the experimental conditions are
presented in the raster plots of A and B. Responses obtained with a moving bar
of low contrast moving at low speed are plotted in B. The (less variable)
responses obtained with a moving bar of high contrast moving at high speed
are depicted in A.

in jitter (8.4 ms vs. 23.8 ms). Alternatively, we can measure the
entropy difference between the corresponding first spike prob-
ability distributions (1-ms bins), which varies from 2.0 bits for low
contrast/high speed vs. high contrast/high speed, to 0.6 bit for
high contrast/low speed vs. high contrast/high speed. Similar
results showing contrast-dependent temporal precision in the
lateral geniculate nucleus have been reported previously in ref.
10, where it is also proposed that the variability is due to intrinsic
noise. We also show that messages with indistinguishable mean
rate responses can show large differences in their variability, in
agreement with the hypothesis of the threshold-crossing deriv-
ative as the relevant parameter, which can be independent of the
firing rate for particular inputs.

Network Architecture and Reliability

The observations discussed in the previous section are restricted
to the behavior of individual neurons. How can they be extended
to networks of spiking elements? In principle, we can assume
that input-dependent noise will be present in early stages of
processing, given the relative simplicity of the neural architec-
ture. The relevance of this phenomenon in higher-order areas
remains to be explored; nevertheless, we may hypothesize that
unless dedicated architectures are implemented to eliminate it,
significant input-dependent noise will be ubiquitous in neural
processing.

Indeed, a recurring question in brain theory and computer
theory is whether there are reliable ways to compute that use
unreliable components. We shall now show explicitly the exis-
tence of a network topology for which the overall time reliability
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Fig.5. Reliability of a fan-out/fan-in structure. An input /(t) is fanned out in
parallel to N identical neurons; one extra (identical) neuron fans in: it receives
input from all N, with the weights adjusted so as to fire once per N/2 input
spikes. In this example, N = 51 and I(t) is a constant plus an Ornstein—
Uhlenbeck process. (Top) Rasters for one instance and all 51 neurons, to
illustrate the reliability of the middle layer. (Middle) Raster for the output
neuron, 40 instances. We emphasize that the output neuron has identical
parameters to the 51 neurons in the middle layer, including identical levels of
internal noise. (Bottom) A noiseless counter firing twice per 51 spikes will
implement a median measurement. Notice that both Middle and Bottom
show two spikes per each spike of the middle layer neurons, and one of them
(the closer to the median) is the more reliable.

can be made arbitrarily better than that found in its individual
neurons.

Assume a single input source (), which “fans out” to a middle
layer of N noisy neurons X;; these in turn “fan in” or input into
a single (also noisy) neuron Y. Let us imagine an I(¢) constructed
so that the X; fire once each at times ¢, If the size of the
connections X—Y is set so that Y fires after seeing half of the
expected number of spikes coming from the Xs, then clearly
neuron Y will be fire near the median time of the spike times ;.
The median, as a descriptor of the ¢;, has a number of exceedingly
nice properties in this context: (i) its variance decreases as
1/V'N, and thus the timing accuracy of Y can be made better
than the individual Xs simply by choosing an appropriately large
N; (if) the median, unlike the mean, is exceedingly robust against
outliers and heavy-tailed noise; (iif) the median does not require
that it see the entire set ¢; but only half of it; and (iv) the median
is expected to lie at the time of highest concentration of the ¢,
thus maximizing the timing accuracy of Y. This property can be
fully appreciated in Fig. 5. Thus, we see that different topologies
will propagate spike timing accuracy in different fashions, and
that one probably should expect architectural correlates in place
in the brain.

To gain further insight into this issue and to study the
implications of our observations on the synchronization of a
neuronal network, we now concentrate on random but fixed time
delays across pathways, rather than on individual timing accu-
racy. We modify the previous model: all neurons of the middle
layer are now noise-free and in principle identical, and so are
their spike trains; the neurons are integrate-and-fire units as in
Eq. 1, with the further addition of a refractory period. We next
model a dispersion of the transmission delay times by rigidly
shifting the spike train of each individual neuron by a random
value uniformly distributed between 0 and &. The total charge
that the integrating neuron receives does not depend on this
shift, but when all neurons are synchronized, the derivative of the
charge will be high, and then we expect more reliable responses.
Fig. 6 shows how the timing reliability (open circles), measured
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Fig.6. Simple model to study the effects of synchronization on the reliability

of the neuronal responses. Seventy-five neurons synapse on a unique neuron
modeled as a leaky integrate-and-fire as in Eq. 1, with the addition of a
refractory period; g = 0.005/s, o = 0.07, refractory period = 10 ms. Mean rate
(OJ) and reliability (O) are shown for a neuron integrating spikes over an input
layer of 75 neurons. A pattern of spikes was randomly generated (3.75 Hz), and
each neuron of the input layer feeds the same pattern of spikes with a delay
8. The values of the other parameters are as in Fig. 5. When the input layer is
synchronized, V of the integrating neuron is big and the response is very
reliable. In this case, part of the charge from the input layer is lost because
there is no summation during the refractory period. When § increases, the
reliability decreases but the mean firing rate is increased. This result suggests
that a function of synchronization, which is known to occur in many different
neuronal networks, might be to increase the reliability on the system at the
expense of the intensity of the signal.

by the method of spike metrics (11), decreases with the decor-
relation of the input layer. Interestingly, when the derivatives are
high the response is more reliable, but by the same token, the
current supplied during the refractory period will be lost. This
means that smooth distributions will result in an increased
effective charge and thus the rate of response of the integrating
neuron is bigger when the input layer is decorrelated, as shown
in Fig. 6 (open squares). [There is a second regime (not shown),
if the decorrelation is large compared with the decay time of the
neuron, in which rate decreases with increasing 6 because of
current losses.]

We think that this very simple concept might be of physio-
logical relevance, in that it implies a tradeoff between temporal
reliability and the dynamic range of the signal: when the dynamic
range is large, it is possible to afford the cost of losing part of the
charge to achieve reliability, whereas in a situation in which the
dynamic range is limited, reliability has to be killed to preserve
and propagate the signal. This idea suggests the possibility of
integration pathways that multiplex the signal, as found in retinal
adaptation.

Conclusions

The relevance of the message-dependent nature of noise in
spiking elements is, to our understanding, twofold. One aspect
is its consequences for the use of Shannon’s Information Theory
as a framework to measure the information content present in
the output of a neuron. This is the subject of much work recently
(12). In this regard, a basic assumption commonly made is that
the noise introduced by the communication channel is indepen-
dent of the message being transmitted, which allows the mod-
eling of a neuron as a Gaussian channel (13, 14). This assumption
is indeed desirable, given that departures from the Gaussian
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channel have proved to be rather cumbersome; for instance, no
general theory for the computation of channel capacity exists
(15). Our results render average measures of information per
spike less meaningful than usually thought, and speak for the
necessity of concentrating on particular individual spikes. This
concentration is especially critical when the message consists of
only a few spikes (for instance, in the auditory pathway), or in the
event of fast conductance modulations (16), which can dramat-
ically affect the reliability. Thus, perhaps the most fundamental
consequence of Mainen and Sejnowski’s result (3) is the implicit
demonstration that cortical neurons are not always classical
Gaussian channels.

A second relevant aspect is the possible anatomical correlate
of this phenomenon. In this regard, we have shown that unless
dedicated architecture is implemented to reduce the multipli-
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cation of noise along the processing pathways, the encoding of
behaviorally relevant (not only “artificial” stimuli) can be highly
degraded. Finally, we demonstrated that it is possible to design
network topologies with arbitrarily large temporal reliability,
and consequently one should expect an evolutionary pressure to
implement them in specific areas of the brain where time
accuracy is essential.
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