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ABSTRACT2

In the auditory nerve and the following auditory pathway, incoming sound is encoded into spike3
trains – series of neural action potentials. At the third neuron of the auditory pathway, spike trains4
of the left and right sides converge and are processed to yield sound localization information. Two5
different localization encoding mechanisms are employed for low and high sound frequencies in6
two dedicated nuclei in the brainstem: the medial and lateral superior olivary nuclei. Building upon7
our previous computational model of medial superior olive (MSO), this paper brings analytical8
estimates of parameters needed to describe auditory coding in the MSO circuit. We arrive to9
best estimates for neuronal signaling with the use of just noticeable difference and the ideal10
observer concepts. We describe spike timing jitter and its role in the spike train processing. We11
study the dependence of sound localization precision on the sound frequency. All parameters12
are accompanied with detailed estimates of their values and variability. Intervals bounding all the13
parameters from lower and higher values are discussed.14

KEYWORDS: binaural hearing, coincidence detection, ideal observer, interaural time difference, just noticeable difference, lateral15
and medial superior olive, sound localization, spike timing jitter16

Abbreviations and symbols17

fS, sound frequency; FC, critical sound frequency value; ϕ, sound phase; ILD, interaural level difference;18
IPD, interaural phase difference; ITD, interaural time difference; JND, just noticeable difference, also19
difference limen, or difference threshold; K(.), KC, KS , KX ; A, B, C, . . . proportionality constants;20
l, sound level, also rate level of point process; LSO, lateral superior olive; MSO, medial superior olive;21
R(.), RVS, VS, vector strength; RF , firing rate; σ, standard deviation; tJ timing jitter; t, ∆t, time, time22
difference; T , TX, T(.), sound periods, time constants.23
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1 INTRODUCTION

Mammalian sound localization circuits contain two nuclei in the auditory brainstem - the medial and the24
lateral superior olive, MSO and LSO, respectively. Neurons in these nuclei are the first binaural neurons25
in the auditory pathway, processing the information arriving from both ears. The MSO processes low26
frequency sounds, in human this is from 20 Hz to not more than 2 kHz, and the LSO processes high27
frequency sounds, in human this is from 1 kHz up to 20 kHz Middlebrooks and Green (1991). Due to the28
physical nature of the binaural stimulus, the MSO neurons process spike timing differences, Interaural29
Time Differences, ITDs. The ITDs emerge as a result of different distance from the sound source to each30
ear. The ITDs take values given by the distance between the ears (in human this is circa 16 cm/ 466 µs31
sound takes to travel this distance in the air) and are detected with precision of tens of microseconds, 10 µs32
Laback and Majdak (2008). The LSO detects the Interaural Level Difference, ILD, given by the acoustic33
shadow of the head. The frequency region, where these two mechanisms overlap (around 1.5 kHz) is known34
to have a drop in localization sensitivity Mills (1958).35

Firing rate, first spike latency and individual spike timings are used in neural system coding, especially36
in the auditory pathway. Human MSO can detect binaural spike timing shifts as small as 10 µs and this37
ability is reported to be improved two- to five-fold after several hours of training Middlebrooks and Green38
(1991). Considering that duration of a neuronal action potential is approximately 1 ms, such performance is39
striking. Furthermore, to be etologically useful, the MSO must provide stable operation over a wide range40
of sound frequencies and intensities and listening conditions. While it has been reported that computation41
in the MSO is independent on sound intensity Grothe et al. (2010), it is known that its performance drops42
as the stimulus frequency increases.. Relation of this dependence to binaural cues has been described, yet it43
is difficult to interpret.44

It is generally agreed that the main reason, why the precision of the MSO circuit deteriorates towards45
higher frequency is lowering of the synchronization of spike trains with the sound phase. However, exact46
mechanisms are not completely understood. One of our aims is thus to explore the conditions and limits of47
MSO circuit operation using the computational modeling approach.48

This article presents description of information encoding and neural computation in the MSO obtained49
mostly with analytical computations. Using the analytical tools we extend quantitative results obtained by50
numerical computations in Sanda and Marsalek (2012). We compare this analytical MSO description to51
the LSO description in Bures and Marsalek (2013) to arrive to unified description of neural circuits in the52
superior olive. We use this description to find the performance limits of the MSO circuit in dependence53
on sound frequency and intensity. Apparently, low and high frequency sound localization use different54
neuronal mechanisms. Sound features in low and high sound frequencies are encoded by distinctive codes55
and this multitude of codes also affects binaural processing.56

2 METHODS

2.1 Preliminaries57

In the neural circuit model used here spikes, or action potentials, fired in the arbitrarily precise time are58
individual events of neural computation. Arbitrary precise timing would imply arbitrary high information59
content. In the model, this is limited by assumptions of intrinsic noise content. Numerical implementation60
has been described in Sanda and Marsalek (2012). Here we develop combined stochastic and analytical61
description of the model. Our aim is to arrive at parameters and constants useful in the MSO description.62
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The neural circuit consists of neurons, functional units exchanging spikes. Incoming sound is sequentially63
processed in the auditory periphery. All the processing stages, including cochlea, are modeled as all-or-none64
units with various degree of biological realism. After cochlea, locations of individual neurons in model65
correspond nearly to anatomical neuron numbering Kulesza Jr (2007). The zero order neuron is the whole66
mechanical-to-electrical cochlear mechanism, neurons of order 1 are in auditory nerve, order 2 are neurons67
in the cochlear nuclei, order two and a half is the medial nucleus of trapezoid body, we regard this nucleus68
as a ”polarity inverter”, and order 3 are the neurons of the MSO itself. The order 3 neurons are the binaural69
part of the circuit.70

Before they converge on the MSO the two, left and right, branches process sound from left and right71
ear. After the sound is encoded by cochleas into spike trains, the rest is the processing of spike trains72
by neurons. The spike trains are subject to delays and synaptic relying. A remarkable property of the73
auditory pathway is that both synapses and neurons have the shortest response times and highest time74
precision in the mammalian brain. If the neurons were represented by RC circuit, or similar equivalent75
biophysical models, their time constants would be comparable to, or lower than 1 ms. Due to vernier76
mechanisms known from various parts of peripheral sensory pathways, they can capture time events in77
the range of tens of microseconds. This capability has been described in human, Mills (1958). In some78
animal species – localization specialists, responses are in the range of tens of nanoseconds, as it has been79
shown in experiment on bats by Simmons et al. (1998). Several other time constants and frequencies are80
characteristic for this neural circuit. They are shown in Table 1.81

2.2 Model of the MSO neural circuit82

Our model MSO circuit is based on connected phenomenological neurons. Input sound to left and right83
sides is transformed by the auditory periphery module into spike trains. Spikes in these trains are point84
events, where only spike times matter and the details of spike numerical implementation do not make any85
differences in model output. These spike trains converge and diverge into higher order neurons. They are86
relayed from the auditory nerve and cochlear nucleus through the medial and lateral nuclei of trapezoid87
body up to the neurons of medial superior olive, which are first binaural neurons. Output of the binaural88
neurons is the azimuth signal encoded in a spike train. However, components of our computational model89
can not be identified with individual neurons and their anatomical connectivity. Rather, the model consists90
of functional block units representing the crucial properties of the explored neural mechanism, such as91
intrinsic noise, temporal delay and coincidence detection. This functional block model layout provides92
access to descriptive parameters, which are setting the circuit’s performance limits, see Figure 1. In our93
MSO model, the interaural time delay (ITD) present at the MSO input is represented by firing rate at the94
MSO output. The relationship between the input ITD and output spike rate is called ITD readout curve, see95
the next section.96

2.3 ITD readout curve97

Let us have a monotonous function with firing rate as an input, which outputs azimuth. We call it the ITD98
readout curve. In the paper by Sanda and Marsalek (2012) this curve was constructed by curve fitting to99
simulated points. Several assumptions about the sound objects had to be fulfilled to assure the existence100
of the readout curve. Here we simplified therefore improved construction of this curve. Now it is based101
on assumption that the main (i.e. dominant) frequency of sound input exist, is unique and is known. In102
addition to this known frequency, other parameters of the readout curve are set to make the fitting well103
posed and to obtain correct position of the curve maximum.104
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Figure 1. Schematic MSO circuit with anatomic and connection layouts. This Figure with
modifications is reprinted with permission from the manuscript of Sanda and Marsalek (2012) to show the
numerical model key features.

2.4 Vector strength105

The vector strength Kessler et al. (2021) has been first used in the context of sound localization by106
Goldberg and Brown (1969). It is commonly used in auditory neuroscience to quantify how well a spike107
train phase-locks, or synchronizes with periodic stimulus phases. Its definition follows. Let us have sample108
spike phases ϕi, i = 1, 2, . . . , N relative to phases of a given input master periodic function. Only the109
phases enter the formula. The periodicity of vowel tones making up speech is a perfect example of such110
stimulus. Discrete sum vector strength of samples ϕ1, . . . , ϕN attains values from 0 to 1 and is defined as111

RVS(ϕi) =
1

N

√√√√( N∑
i=1

cosϕi

)2

+

(
N∑
i=1

sinϕi

)2

. (1)

Here we use the vector strength to analyze temporal acuity of inputs to the MSO model and the consequences112
how the degree of synchronization affects the MSO precision.113

2.5 JND and ideal observer114

A higher variability of firing leads to a lower precision of the rate code. Intuitively, if a repeated115
presentation of the same stimulus evokes each time different spike count, then to distinguish between two116
different stimuli, the associated spike count change must be larger than the spike count variability. This way117
we determine the Just Noticeable Difference (JND) of the rate code. In other words, this is the precision of118
rate coding.119
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We will ask whether it is possible to distinguish between two random processes with rates l1 and l2,120
l2 > l1. If we count events in given counting window, we get counts n1 and n2. The probability that the121
observer obtains a result that l2 > l1 equals to the probability that n2 > n1. Let us assume that the random122
variables ni, i = 1, 2, . . . , have probability distributions p(ni) with means µi and equal standard deviation123
σ. A detection distance is then defined Tanner Jr. (1961) as124

d′ =
µ2 − µ1

σ
. (2)

This definition expresses the fact that the larger is the variance of the spike count, the worse is the125
detection capability. In psychophysics, a threshold value is commonly defined as that value for which the126
percentage of correct answers equals 75%. In our case, the examined value is the just-noticeable change of127
firing rate, ∆l = l2 − l1. Assuming that both p(n1) and p(n2) are Gaussian (normal) distributed, the 75%128
probability of n2 − n1 > 0 corresponds to d′ = 1. To obtain the JND of firing rate, we scale the detection129
distance with ∆l and put δ′ = d′/∆l. Then, the JND of firing rate is130

∆lJND = 1/δ′ =
l2 − l1
µ2 − µ1

σ. (3)

We apply these tools to the MSO output to study the precision of the sound localization circuit to discuss131
its dependence on input sound frequency.132

3 RESULTS

We investigate how the MSO circuit output and overall performance depend on sound frequency and sound133
intensity. Figures from2 to5 show results of numerical simulations obtained using the computational model134
from Sanda and Marsalek (2012) side to side to experimental data as black lines and points, analytically135
described lower estimates as blue lines, upper estimates as red lines and standard errors of measurement136
and variations, which are shown in green.137

Successive figures show individual steps of sound localization signal processing. Fig. 2 shows how vector138
strength in individual units lowers towards high sound frequencies. Fig. 3 shows the range of ITDs in sound139
localization precision. Fig. 4 shows the JND of the neural circuit in the dependence on the spike timing140
jitter. Fig. 5 shows synchronization to main sound frequency (in the case when it exists).141

Figure2 shows how vector strength RVS lowers towards higher frequencies, as it can be observed in the142
module of the auditory periphery consisting of auditory nerve and cochlear nucleus. The prevailing majority143
of neurons in the auditory pathway has vector strength spike train statistics sigmoidally dropping towards144
higher sound frequencies as it is in this example. In this figure, data originally recorded by Joris (1996) at145
the MSO of domestic cat, were fitted to the sigmoidal curve with the general formula of the Boltzmann146
function used in Marsalek and Lansky (2005). The curve fit of vector strength RVS in dependence on sound147
frequency FS is:148

RVS = 1/(1 + exp(KSfS −KCFC1/2)), (4)

where named parameters with values are KS = 2/0.75 = 2.666 ms (kHz−1), sound frequency coefficient;149
KC = 4/0.75 = 5.333 ms (kHz−1), critical coefficient; and FC1/2 = 0.75 kHz, critical half frequency. The150
numerical values are the proportionality constants of the RVS upper bound curve, denoted red. Note that at151
sound frequencies from 20 to 100 Hz, there are two branches reflecting the existence of two alternative152
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ways how to compute the lower limit, which is 90 % of the upper limit. The first, blue curve corresponds153
to quantile between 80 and 90 % of the upper limit. The second, green, lower curve is based on estimate154
of probability of spike coming from both sides, which progressively lowers towards lower frequencies,155
calculated as in Marsalek and Lansky (2005), see Discussion section.156

Figure 3 shows the curves limiting the ITD obtained with the basic parameter set in dependence on the157
sound frequency. The quadratic curve fit of the JND denoted ∆tJND is:158

∆tJND = A(fS − FC1/2)
2 +B. (5)

Values of these parameters are A = 10−5, B = 0.05, FC1/2 = 1 kHz. The parameters in the Figures were159
constructed as follows: firstly, splines were fitted to experimental data, published by [Mills 1958] and160
reproduced by his followers. Splines parameters were allowed to vary within the 10 % of their original value161
and were approximated by the rounded off values. These procedures were also used to get parameter values162
below. For ranges of the audiogram parameters, see also Zwislocki and Feldman (1956). Analogously to163
Figure 2, sound frequencies from 20 to 100 Hz exhibit higher spread between lower and upper limits, as164
the fitting method used, quadratic fit, is the same for both limits.165

Figure 4 shows how the JND of ITD depends on timing jitter magnitude tJ. Figure purpose is to capture,166
what is the best JND. There are several time constants, which are defined in relation to physical properties167
of spatial sound processing. To attain to rounded off parameters as in the other figures, we select individual168
values of the spike timing jitter and describe their purpose in the localization precision estimation. Critical169
timing jitter is lower estimate of timing jitter captured by spike train of typical mammalian neuron,170
TJC = 0.2 ms. Normalized value timing jitter TJN = 1 ms is the value of timing jitter normalized in171
relation to the output JND with respect to average firing rate. Optimal value timing jitter TJO = 1.66 ms172
is result of crossing two fits described below.173

Simulations show that with lowering timing jitter the circuit output is virtually more and more precise.174
Yet, when the jitter is lower than critical value TJC, determined by intrinsic noise, duration of coincidence175
detection window, and by other time constants, the precision lowers again. The two curves fitted to the176
simulation are:177
1. fit of exponential function to simulations, red curve,178

∆tJND = exp(A1(tJ −B1)) − C1, (6)

where A1 = 1.9, B1 = 1.25 and C1 = 0.2 are fitted parameters. This relation is shown conveniently by the179
logarithmic y-axis in this Figure.180
2. another fit, which also takes into account shot noise in lower jitter values, is to a quadratic function, blue181
curve,182

∆tJND = A2(tJ −B2)
2 + C2, (7)

where A2 = 2.5, B2 = 1, C2 = 1. There is only one parameter sought by numerical simulation. This is A,183
fitted to data, as the point (x, y) = (B2, C2) has been chosen to be a unit. This fit is the normalized fit of184
the model.185

Logarithm of the simulated JND lowers with the exponential curve (6), which is concave function of186
sought jitter tJ as the jitter gets lower. The trend towards higher accuracy diverges from the parabolic fit in187
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Parameter Symbol Units Typical Value Ranges
Timing Jitter tJ, σ ms 1 0.125 - 8
Window of Coincidence Detection wCD ms 0.6 0.15 - 1.5
Sound Frequency f Hz 200 40-1600
Shortest Perceptual Time TPT ms 20 20 - 80

Table 1. The basic set of parameters.

equation (7), when jitter reaches critical value between TJC and TJO.188

TJC = 0.2 / tJ / TJO / 2ms. (8)

Beyond that point towards the lower jitter values, the neural circuit cannot function properly, as too189
low jitter prevents the interaction of spikes from the left and right side within the coincidence detection190
mechanism.191

This corresponds to the analytical dependency obtained in Salinas and Sejnowski (2000) for a perfect192
integrator model with several inputs. The mechanism studied thereof is close to the MSO neural mechanism193
studied here. The firing rate changes in dependency on the input spike timing variability of partially194
correlated input spike trains.195

Figure 5 shows the ITD readout curve. The rising slope of this curve is used as a readout function yielding196
the firing rate in dependency on the ITD, which in turn signals the sound azimuth to the next nuclei of the197
auditory pathway.198

In the numerical model of Sanda and Marsalek (2012) we reproduced a procedure to obtain azimuth199
tuning curves based on hypotheses, how mammalian neural circuits work Grothe et al. (2010). In this200
procedure, prior assumption of the existence of the main (dominant) sound frequency and neural tuning201
to this frequency was used by experimentalists, but not by the authors of the numerical only model in202
(Sanda and Marsalek, 2012). When we use this assumption, which is stronger than in the numerical only203
model, in the calculations presented in this paper, we obtain a fitting curve which is more coherent. (Has204
the higher vector strength value.) Two estimate errors are present in this Figure. The first is the mismatch205
between the use of Gaussian (normal) probability density function, as it is used in some of the experimental206
literature, and Sine function. Sine function is simpler circular statistics counterpart of the Gaussian, where207
the rigorous circular statistics choice is the von Mises distribution. More details of the circular statistics208
use in the sound localization context are explained in the article on the ergodicity assumption by Toth209
et al. (2018). The difference between the two functions is shown here as the green curve. The other error,210
not shown in Figure, would arise from the not using the prior assumption as in the numerical only model211
mentioned above. It appears that the assumption of the main frequency existence leads to more precise212
estimates. This should be, because the assumption adds more information besides the fitted data.213

4 DISCUSSION

In this paper we have revisited numerical simulations by Sanda and Marsalek (2012). We have added214
analytical estimations to the description of the MSO function, which have not been known previously.215
Our analytical calculations make possible to derive time constants useful in description of normal human216
hearing. Because of minimalist set of assumptions about stimuli, we hypothesize that the descriptions are217
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valid also for hearing with hearing aids and cochlear implants. All Figures contain model parameters and218
analytically expressed upper and lower limits of model transfer functions.219

Figure 2 contains two lower limit branches at low frequencies (shown by the blue and green curves,220
respectively). The green curve uses an assumption of lower energy and lower contribution to spike rate in221
neural units in lower frequencies. Limiting lower bound by two different analytical functions (branches)222
can be understood as the estimate uncertainty. A conservative estimate of the lower bound always considers223
the lower of the two branches. This uncertainty should be recognized as one of original results presented224
for the first time in this paper. Its existence has been proposed in a doctoral thesis by Bures (2014). To our225
knowledge this observation has not yet been published elsewhere.226

Figure 3 depicts a quadratic fit. Clearly the data cannot be captured by the linear curve. The procedure to227
obtain the fit is analogous to obtaining other parameters in this paper. Initially splines were used and then228
their output was rounded to arrive to the quadratic fit. This fit is the simplest analytical way, how to capture229
nonlinear and band limited span of human hearing range.230

Figure 4 calculations use assumptions about intrinsic noise Bures (2014). The simulation data have been231
obtained by arbitrary precision calculation. Any neural data recording cannot reach this precision due to232
the internal noise of both neurons and recording electronics. In order to capture circuit noisiness, we have233
used both exponential and quadratic fits. When we attempt to use them as upper and lower bounds, we234
notice that they exchange their order in region close to the optimal jitter value. In other words, at the lower235
jitter values the two estimates exchange their ordering. This is the choice of the quadratic fit to obtain a236
normalized bound together with other data-points. Numerical simulation with the basic set of parameters237
around the x-axis value of tJ = 1 ms lies beyond this point, but close to the exponential fit.238

Figure 5 contains better fit of the Sine function, as compared to Sanda and Marsalek (2012). As the239
lower bound we can also use circular normal density (von Mises) function, the difference is negligible,240
not shown Toth et al. (2018). Comparison of time constants and sound periods in the model presented241
here will answer a tentative question: What is the highest slope of the ITD interpolation curve, such that it242
gives the resolution of the well known minimum audible angle in the midline (ITD = 0), which is 4◦ in243
angular degrees? This slope is more steep in higher frequency sounds, its maximum is attained in maximum244
frequency of the MSO circuit operation, around 1 kHz Marsalek and Lansky (2005).245

Towards the analytical descriptions it is important to note that other periodic functions can be used as246
the ITD readout curves. In Toth et al. (2018) we have compared the Sine function with the circular beta247
density, and other alternative functions. To impose periodic and infinite boundaries to the problem, regular248
normal density and circular normal (von Mises) density have been used and tested in previous versions of249
our model. No differences between these densities with proper parameters have been shown by common250
statistical tests when testing differences between two probability densities, ibidem.251

Franken et al. (2014) use recorded spike trains of several nuclei in the MSO neural circuit to demonstrate252
that coincidence detection is an essential part of the neuronal arithmetic executed by the neural circuit,253
see also Bures (2012). These authors show simulations combined with experimental description of MSO254
workings in line with findings of this paper and with coincidence detection theories. Another MSO model,255
already studied in 2005 is: Zhou et al. (2005), this is an example of simplistic model, motivating the256
neural circuit description presented also in this paper. For discussion of neural coding in the auditory nerve,257
auditory pathway, cochlear implants and brainstem neural circuits see Kerber and Seeber (2012).258

Our investigation of quantitative properties of the superior olive neural circuit is also motivated by the259
three LSO experimental papers, which have detailed methodology applicable to LSO, to the overlap of260
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Figure 2. Vector strength of auditory nerve spike trains in dependence on sound frequency. X-axis
shows sound frequency in Hz in logarithmic scale and y-axis shows the vector strength. Even though in
some nuclei up the auditory pathway the synchronization can be maintained towards higher frequencies
than shown here, the decrease of the vector strength towards higher frequencies is a general property of all
neurons in the auditory pathway. Red curve shows upper theoretical limit, blue curve shows lower limit,
green curve shows limit imposed by lower firing rate and lower energy of low frequency sound. Black
points are data simulated with the use of point-process spike train generation with the use of the dead time
Poisson process. Note that in frequency fS range from 20 to 200 Hz the lower limit is shown by curve
branching to two branches to the left. The upper is the Boltzmann function fit and the lower is decrease of
vector strength at low frequencies due to stochastic response of high spontaneous rate neurons.

sound frequency ranges between the LSO and the MSO; and also to the MSO range itself; Joris and Yin261
(1995); Joris (1996); Joris and Yin (1998) in experiments on the domestic cat.262

Following his (notorious) paper from 1948, Lloyd A. Jeffress dedicated lots of efforts to the search of a263
mechanism, by which microsecond time scale events of directional sound difference can be transformed264
into a code processed and transmitted by action potentials lasting several microseconds Jeffress et al. (1962).265
Historical comments on Jeffress papers from 1948 and 1962 are summarized by Cariani in Scholarpedia266
Cariani (2011). A plausible explanation of the microsecond precision of the MSO circuit can be based on267
descriptions of the neural computation using leading edges of action potentials and post-synaptic potentials,268
Marsalek (2000), Toth et al. (2018).269

Comparative physiology is useful in showing how the same mechanism works in other animals and what270
alternatives are found in the phylogeny tree. Let us mention just two examples here:271
1. Ormia ochracea (fly parasiting on cricket, Gryllus campestris) has the same precision of motor response272
in ITD processing as human. The ‘computational unit’ there is chitin lever connecting two eardrums.273
2. Much higher precision demonstrated by behavioral response is described in bats. Eptesicus fuscus (brown274
bat) catches tidbit larvae of the meal-worm beetle Tenebrio molitor. The motor precision is in the range of275
hundreds of nanoseconds, 100 ns, and auditory separation of ultrasound echoes in the bats sonar sense is in276
the order of microsecond units, 1 µs Simmons et al. (1998).277
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Figure 3. The shortest JND of ITD detected in the dependence on sound frequency. X-axis shows
sound frequency in Hz in a logarithmic scale and y-axis the shortest JND of ITD in µs. This is a theoretical
prediction based on the analytical model and basic parameter set used in simulations. As in other figures,
black line is obtained by simulation and red and blue lines are respectively upper and lower bounds obtained
by an analytic fit.

In contemporary human, the MSO is the larger of the two nuclei and contains approximately 10000 -278
11000 neurons, while the human LSO contains 5600 neurons Moore (2000). To implement the loudness279
change is much simpler than to record and implement microsecond time delay. Therefore in sound280
generation and processing, most of current auditory technology works as if the more important of the two281
localization cues in Homo sapiens were the sound intensity cue Vencovsky and Rund (2016), even though282
the evidence is far not definitive.283

In Marsalek (2000), individual steps of signal processing in the superior olive neural circuits have been284
investigated. Various synaptic mechanisms have been proposed Marsalek and Kofranek (2005). Spike285
timing jitter and spike variability have been systematically analytically investigated by Kostal and Marsalek286
(2010).287

In this last paragraph of Discussion section, we should mention briefly rest of scientific papers, where we288
found ideas towards the design of the analytically tractable model presented here. Article by Michelet et al.289
(2012) discusses interaural phase delays (IPDs; when they exist, their utility is equivalent to that of the290
ITDs) and cochlear delays. In the case of cochlear delays, very important is to review the ranges of delays291
in comparison to sound periods and classically described excitatory-excitatory and excitatory-inhibitory292
responses to binaural inputs in Joris et al. (2006). Paper of Srinivasan, Laback and Majdak cites current293
progress of ITD encoding by binaural cochlear implants, this is important for model validations and294
applications to studies with hearing aids and electrical hearing, Srinivasan et al. (2018).295
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Figure 4. JND values in basic parameter set in dependence on the spike timing jitter magnitude.
This plot in semi-logarithmic y-scale shows JND (just noticeable difference) of interaural time difference
depending on variation of the spike timing jitter. Jagged black line: simulated data, solid line: an exponential
fit to the simulations under the assumption of arbitrary time precision in the model circuit, dotted line: a
quadratic function estimate of spike timing precision in a system with addition of noise. Note that in this
Figure the exponential and quadratic fits cross at fS = 1.66 ms. In order to correspond to other Figures
showing the upper and lower bounds of the estimate of stochastic model, the two fits are split into two
branches of the same function at this point of fS = 1.66 ms. For lower x-axis tJ values, quadratic fit is
larger than the exponential, and vice versa. This is indicated by distinctive data-points. (These are circles
and triangles; no data-points and squares, respectively.) Also notice that the curve of the quadratic fit goes
through the point [1,1], this is a consequence of using normalized parameter set.

CONCLUSIONS

This theoretical paper is continuation of sound localization precision descriptions in the MSO Sanda296
and Marsalek (2012) and in the LSO Bures and Marsalek (2013). Major novel results here are two: 1)297
analytical estimates of results obtained previously only by numerical simulation and 2) estimates of auditory298
parameters and functions bounding from the bottom and from the top known characteristics of the human299
sound localization circuit.300
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