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in Prague, Technická 2/1902, 166 27, Praha 6, Czech Republic

dInstitute of Computer Science, Czech Academy of Sciences, Pod Vodárenskou věž́ı 2/271,
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fCollege of Polytechnics, Tolstého 16/1556, 586 01, Jihlava, Czech Republic

cCorresponding author: Petr.Marsalek@LF1.CUNI.CZ

October 11, 2021

Abstract

Incoming sound is in cochlea and auditory nerve encoded into spike trains. At the third neuron of the auditory pathway,

spike trains of the left and right sides are processed in brainstem nuclei to yield sound localization information. Two different

localization encoding mechanisms are employed in two “centers” for low and high sound frequencies in the brainstem. The

centers are superior olivary nuclei, medial and lateral. This paper contains analytical estimates of parameters needed in

description of auditory coding in sound localization neural circuit. Our model spike trains are based on electro-physiological

recordings. We arrive to best estimates for neuronal signaling with the use of just noticeable difference of the ideal observer.

We describe spike timing jitter and its role in the spike train processing. We study frequency dependence of spike trains

on the sound frequency. All parameters are accompanied with detailed estimates of their values and variability. Intervals

bounding all the parameter from lower and higher values are discussed.
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Abbreviations and symbols

fS, sound frequency; FC, critical sound frequency value; φ, sound phase; ILD, interaural level difference; IPD, in-
teraural phase difference; ITD, interaural time difference; JND, just noticeable difference, also difference limen,
or difference threshold; K(.), KC, KS , KX ; A, B, C, . . . proportionality constants; l, sound level, also rate
level of point process; LSO, lateral superior olive; MSO, medial superior olive; R(.), RVS, VS, vector strength;
RF , firing rate; σ, standard deviation; tJ timing jitter; t, ∆t, time, time difference; T , TX, T(.), sound periods,
time constants.
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1 Introduction

Mammalian sound localization circuits contain two nuclei in the auditory brainstem, the medial
and the lateral superior olive, MSO and LSO. Neurons in these nuclei are the first binaural neurons
in the auditory pathway connected to both ears. Due to the physical nature of the binaural sound,
the MSO neurons process spike timing differences, Interaural Time Differences, ITDs, in the range
of tens of microseconds, 10 µs [16]. The MSO processes low frequency sounds, in human this is
from 20 Hz to not more than 2 kHz, and the LSO processes high frequency sounds, in human
this is from 1 kHz up to 20 kHz [21]. The LSO uses cues of the Interaural Level Difference, ILD.
The overlapping region is known to have a sensitivity drop at 1.5 kHz [22].

Eptesicus fuscus catches tidbit larvae of the meal-worm beetle Tenebrio molitor . The motor
precision is in the range of hundreds of nanoseconds, 100 ns, and auditory separation of ultrasound
echoes in the bats sonar sense is in the order of microsecond units, 1 µs [26]. SHOULD BE
MOVED TO DISCUSSION.

Firing rate, first spike latency and individual spike timings are used in neural system coding, es-
pecially in the auditory pathway. Performance of the human MSO is in the range of microseconds,
10 µs and is reported to be improved two- to five-fold after several hours of training [21].

Different neural mechanisms are employed in the two nuclei. It has been reported that com-
putation in the MSO is independent on sound intensity [7]. With higher sound intensity, first
spike latency is shortening. Relation of this dependence to ITD and ILD has been described, yet
it is difficult to interpret.

In contemporary human the MSO is the larger of the two nuclei and contains approximately
10000 - 11000 neurons and the human LSO contains 5600 neurons [23]. To implement the
loudness change is much simpler than to record and implement microsecond time delay. Therefore
in sound generation and processing, most of current auditory technology works as if the more
important of the two localization cues in Homo sapiens were the sound intensity cue [30].

It is generally agreed that the main reason, why the workings of the MSO circuit deteriorate
towards higher frequency is lowering of the synchronization of spike trains in the circuit with the
sound source phase. The synchronization between two corresponding series of point events can
be expressed as a discrete formula of vector strength, defined below in equation (1).

This article presents description of information encoding and neural computation in the MSO
obtained mostly with analytical computations. Using the analytical tools we extend quantitative
results obtained by numerical computations in [25]. We compare this analytical MSO description
to the LSO description in [3] to arrive to unified description of neural circuits in the superior
olive. We use this description to find maximum spike timing precision. Apparently, low and
high frequency sound localization use different neuronal mechanism, because low and high sound
frequencies are encoded by distinctive codes. In a simplified view, low frequencies are encoded
by both spike timing and tonotopic organization, and high frequencies are encoded solely by the
tonotopic organization.

2 Methods

2.1 Preliminaries

In the neural circuit model used here spikes, or action potentials, fired in the arbitrarily precise
time are individual events of neural computation. Arbitrary precise timing would imply arbitrary
high information content. In the model, this is limited by assumptions of intrinsic noise content.
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Numerical implementation has been described in [25]. Here we develop combined stochastic and
analytical description of the model. Our aim is to arrive at parameters and constants useful in
the MSO description.

The neural circuit consists of neurons, functional units exchanging spikes. Incoming sound is
sequentially processed in the auditory periphery. All the processing stages, including cochlea, are
modeled as all-or-none units with various degree of biological realism. After cochlea, individual
neurons correspond more-less to anatomical neuron numbering [15], where the zero order neurons
is the whole mechanical-to-electrical cochlear mechanism, neurons of order 1 are in auditory nerve,
order 2 are neurons in the cochlear nuclei, order two and a half is the medial nucleus of trapezoid
body, we regard this nucleus as a ”polarity inverter”, and order 3 are the neurons of the MSO
itself. This is the binaural part of the circuit.

Before they converge on the MSO the two, left and right, branches process sound from left and
right ear. After the sound is encoded by cochleas into spike trains, the rest is the processing of
spike trains by neurons. The spike trains are subject to delays and synaptic relying. A remarkable
property of the auditory pathway is that both synapses and neurons have the shortest response
times and highest time precision in the mammalian brain. If the neurons were represented by RC
circuit, or similar equivalent biophysical models, their time constants would be comparable to,
or lower than 1 ms. Due to vernier mechanisms known from various parts of peripheral sensory
pathways, they can capture time events in the range of tens of microseconds. This capability
has been described in human, [22]. In some animal specialists, some responses are in the range
of tens of nanoseconds, as it has been shown in experiment on bats by [26]. Several other time
constants and frequencies are characteristic for this neural circuit. They are shown in Table 1.

2.2 Model of the MSO neural circuit

Our model MSO circuit is based on connected phenomenological neurons. Input sound to left
and right sides is transformed by the auditory periphery module into spike trains. Spikes in these
trains are point events, only spike times matter and the details of spike numerical implementation
do not make any differences in model output. These spike trains converge and diverge into higher
order neurons. They are relayed from the auditory nerve and cochlear nucleus through the medial
and lateral nuclei of trapezoid body up to the neurons of medial superior olive, which are first
binaural neurons. Output of these neurons is the azimuth signal encoded in a spike train. See
Figure 1.

2.3 ITD readout curve

Let us have a monotonous function with firing rate as an input, which outputs azimuth. We will
call it the ITD readout curve. In the paper by [25] this curve is constructed by curve fitting to
simulated points. Here we construct the curve based on assumption that the main frequency of
sound input exist, is unique and is known. In addition to this known frequency, other parameters
of the readout curve are set to make the fitting well posed and to obtain correct position of the
curve maximum.

2.4 Vector strength

The vector strength has been first used in the context of sound localization by [6]. Its definition
follows. Let us have sample spike phases φi, i = 1, 2, . . . , N relative to phases of a given input
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master periodic function, which does not enter the formula. The periodicity of tones making up
speech is a perfect example of such stimulus. Discrete sum vector strength of sample φ1, . . . , φN

attains values from 0 to 1 and is defined as

RVS(φi) =
1

N

√√√√( N∑
i=1

cosφi

)2

+

(
N∑
i=1

sinφi

)2

. (1)

2.5 JND and ideal observer

A higher variability of firing leads to a lower precision of the rate code. Intuitively, if a repeated
presentation of the same stimulus evokes each time different spike count, then to distinguish
between two different stimuli, the associated spike count change must be larger than the spike
count variability. This way we determine the Just Noticeable Difference (JND) of the rate code.
In other words, this is the precision of rate coding.

We will ask whether it is possible to distinguish between two random processes with rates l1
and l2, l2 > l1. If we count events in a given counting window, we get counts n1 and n2. The
probability that the observer obtains a result that l2 > l1 equals to the probability that n2 > n1.
Let us assume that the random variables ni, i = 1, 2, . . . , have probability distributions p(ni)
with means µi and equal standard deviation σ. A detection distance is then defined [28] as

d′ =
µ2 − µ1

σ
. (2)

This definition expresses the fact that the larger is the variance of the spike count, the worse
is the detection capability. In psychophysics, a threshold value is commonly defined as that value
for which the percentage of correct answers equals 75%. In our case, the examined value is the
just-noticeable change of firing rate, ∆l = l2 − l1. Assuming that both p(n1) and p(n2) are
Gaussian (normal) distributed, the 75% probability of n2 − n1 > 0 corresponds to d′ = 1. To
obtain the JND of firing rate, we scale the detection distance with ∆l and put δ′ = d′/∆l. Then,
the JND of firing rate is

∆lJND = 1/δ′ =
l2 − l1
µ2 − µ1

σ. (3)

3 Results

We investigate how the MSO circuit output and overall performance depend on sound frequency
and sound intensity. Figures from 2 to 5 show numerical simulations and experimental data as
black lines and points, analytically described lower estimates as blue lines, upper estimates as red
lines and standard errors of measurement and variations are shown in green.

Successive figures show individual steps of sound localization processing. Fig. 2 shows how
vector strength in individual units lowers towards high sound frequencies. Fig. 3 shows the range of
ITDs in sound localization judging. Fig. 4 shows the JND of the neural circuit in the dependence
of the spike timing jitter. Fig. 5 shows synchronization to main sound frequency (in the case
when it exists).

Figure 2 shows how vector strength RVS lowers towards higher frequencies, as it can be
observed in the module of the auditory periphery consisting of auditory nerve and cochlear nucleus.
The prevailing majority of neurons in the auditory pathway has vector strength spike train statistics
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sigmoidally dropping towards higher sound frequencies as it is in this example. In this figure, data
originally recorded by [11] at the MSO of domestic cat, were fitted to the sigmoidal curve with
the general formula of the Boltzmann function used in [19]. The curve fit of vector strength RVS

in dependence on sound frequency FS is:

RVS = 1/(1 + exp(KSfS −KCFC1/2)), (4)

where parameters with values areKS = 2/0.75 = 2.666 ms (kHz−1), sound frequency coefficient;
KC = 4/0.75 = 5.333 ms (kHz−1), critical coefficient; and FC1/2 = 0.75 kHz, critical half
frequency. The numerical values are the proportionality constants of the RVS upper bound. Note
that at sound frequencies from 20 to 100 Hz, there are two branches reflecting the existence
of two alternative ways how to compute the lower limit, which is 90 % of the upper limit, see
Discussion section.

Figure 3 shows the curves limiting the ITD obtained with the basic parameter set in dependence
on the sound frequency. The quadratic curve fit of the JND denoted ∆tJND is:

∆tJND = A(fS − FC1/2)
2 +B, (5)

Values of these parameters are A = 10−5, B = 0.05, FC1/2 = 1 kHz. The parameters in the
Figures were constructed as follows: firstly, splines were fitted to experimental data. Splines
parameters were allowed to vary within the 10 % of their original value and were approximated
by the rounded off values. These procedures were also used to get parameter values below. For
ranges of the audiogram parameters, see also [32]. Analogously to Figure 2, sound frequencies
from 20 to 100 Hz exhibit higher spread between lower and upper limits, as the fitting method
used, quadratic fit, is the same for both limits.

Figure 4 shows how the JND of ITD depends on timing jitter magnitude tJ. Figure purpose is
to capture, what is the best JND. There are several time constants, which are defined in relation
to physical properties of spatial sound processing. To attain to rounded off parameters as in
the other figures, we select individual values of the spike timing jitter and describe their purpose
in the localization precision estimation. Critical timing jitter is lower estimate of timing jitter
captured by spike train of typical mammalian neuron, TJC = 0.2 ms. Normalized value timing
jitter TJN = 1 ms is the value of timing jitter normalized in relation to the output JND with
respect to average firing rate. Optimal value timing jitter TJO = 1.66 ms is result of crossing
two fits described below.

Simulations show that with lowering timing jitter the circuit output is virtually more and more
precise. Yet, when the jitter is lower than critical value TJC, determined by intrinsic noise, duration
of coincidence detection window, and by other time constants, the precision lowers again. The
two curves fitted to the simulation are: 1. fit of exponential function to simulations, red curve:

∆tJND = exp(A1(tJ −B1))− C1, (6)

where A1 = 1.9, B1 = 1.25 and C1 = 0.2 are fitted parameters. This relation is shown
conveniently by the logarithmic y-axis in this Figure.

2. another fit, which also takes into account shot noise in lower jitter values, is to a quadratic
function, blue curve,

∆tJND = A2(tJ −B2)
2 + C2, (7)

where A2 = 2.5, B2 = 1, C2 = 1. There is only one parameter sought by numerical simulation.
This is A, fitted to data, as the point (x, y) = (B2, C2) has been chosen to be a unit. This fit is
the normalized fit of the model.
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Parameter Symbol Units Typical Value Ranges
Timing Jitter tJ, σ ms 1 0.125 - 8
Window of Coincidence Detection wCD ms 0.6 0.15 - 1.5
Sound Frequency f Hz 200 40-1600
Shortest Perceptual Time TPT ms 20 20 - 80

Table 1: The basic set of parameters.

Logarithm of the simulated JND lowers with the exponential curve (6), which is concave
function of sought jitter tJ as the jitter gets lower. The trend towards higher accuracy diverges
from the parabolic fit in equation (7), when jitter reaches critical value between TJC and TJO.

TJC = 0.2 ⪅ tJ ⪅ TJO ⪅ 2ms. (8)

Beyond that point towards the lower jitter values, the neural circuit cannot function properly, as
too low jitter prevents the interaction of spikes from the left and right side within the coincidence
detection mechanism.

This corresponds to the analytical dependency obtained in [24] for a perfect integrator model
with several inputs. The mechanism studied thereof is close to the MSO neural mechanism
studied here. The firing rate changes in dependency on the input spike timing variability of
partially correlated input spike trains.

Figure 5 shows the ITD readout curve. The rising slope of this curve is used as a readout
function yielding the firing rate in dependency on the ITD, which in turn signals the sound azimuth
to the next nuclei of the auditory pathway.

In the numerical model of [25] we reproduced a procedure to obtain azimuth tuning curves
based on mammalian data. In this procedure, prior assumption of the existence of the main sound
frequency and neural tuning to this frequency was used by experimentalists, but not by the model
authors. When we use this assumption, which is stronger than in the numerical model, we obtain
a fitting curve which is more coherent. (Has the higher vector strength value.) Two estimate
errors are present in this Figure. The first is the mismatch between the use of Gaussian (normal)
probability density function, as it is used in the experimental literature, and a circular statistics.
More details of the circular statistics use in the sound localization context are explained in the
article on the ergodicity assumption by [29]. The first error is shown here as the green curve.
The other error, not shown in Figure, would arise from the prior assumption above. It appears
that the assumption of the main frequency existence leads to more precise estimates.

4 Discussion

In this paper we have revisited numerical simulations by [25]. We have added analytical esti-
mations to the description of the MSO function, which have not been known previously. Our
analytical calculations make possible to derive time constants useful in description and design of
normal human hearing. The descriptions are valid also for hearing with hearing aids and cochlear
implants. All Figures contain analytically expressed upper and lower limits in their transfer func-
tions or other functional descriptions.

Figure 2 contains two lower limit branches at low frequencies (shown by the blue and green
curves, respectively). The green curve uses an assumption of lower energy and lower contribution
to spike rate in neural units in lower frequencies. Limiting lower bound by two different analytical
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functions (branches) can be understood as the estimate uncertainty. A conservative estimate
of the lower bound always considers the lower of the two branches. This uncertainty should be
recognized as one of original results presented for the first time in this paper. Its existence has
been proposed in a doctoral thesis by [2]. To our knowledge this observation has not yet been
published elsewhere.

Figure 3 depicts a quadratic fit. Clearly the data cannot be captured by the linear curve. The
procedure to obtain the fit is analogous to obtaining other parameters in this paper. Initially
splines were used and then their output was rounded to arrive to the quadratic fit. This fit is the
simplest analytical way, how to capture nonlinear and band limited span of human hearing range.

Figure 4 calculations use assumptions about intrinsic noise [2]. The simulation data have
been obtained by arbitrary precision calculation. Any neural recording cannot reach this precision
due to the internal noise of both neurons and recording electronics. In order to capture circuit
noisiness, we have used both exponential and quadratic fits. When we attempt to use them as
upper and lower bounds, we notice that they exchange their order in region close to the optimal
jitter value. In other words, at the lower jitter values the two estimates exchange their ordering.
This is the choice of the quadratic fit to obtain a normalized bound together with other data-
points. Numerical simulation with the basic set of parameters around the x-axis value of tJ = 1
ms lies beyond this point, but close to the exponential fit.

Figure 5 contains better fit of the Sine function, as compared to [25]. As the lower bound
we can also use circular normal density function, the difference is negligible, not shown [29].
Comparison of time constants and sound periods in the model presented here will answer a
tentative question: What is the highest slope of the ITD interpolation curve, such that it gives
the resolution of well known minimum audible angle in the midline (ITD = 0), which is 4◦ in
angular degrees? This slope is more steep in higher frequency sounds, its maximum is attained
in maximum frequency of the MSO circuit operation, around 1 kHz [19].

Towards the analytical descriptions it is important to note that other periodic functions can
be used as the ITD readout curves. In [29] we have compared the Sine function with the circular
beta density , and other alternative functions. To impose periodic and infinite boundaries to the
problem, regular normal density and circular normal density have been used and tested in previous
versions of our model. No differences between these densities with proper parameters have been
shown by common statistical tests when testing differences between two probability densities,
ibidem.

[5] use recorded spike trains of several nuclei in the MSO neural circuit to demonstrate that
coincidence detection is an essential part of the neuronal arithmetic executed by the neural circuit,
see also [1]. These authors show simulations combined with experimental description of MSO
workings in line with findings of this paper and with coincidence detection theories. Another MSO
model, already studied in 2005 is: [31], this is an example of simplistic model, motivating the
neural circuit description presented in this paper. For discussion of neural coding in the auditory
nerve, auditory pathway, cochlear implants and brainstem neural circuits see [13].

Our investigation of quantitative properties of the superior olive neural circuit is also motivated
by the three LSO experimental papers, which have detailed methodology applicable to LSO, to
the overlap of sound frequency ranges between the LSO and the MSO; and also to the MSO
range itself; [10]; [11]; [12].

Following his paper from 1948, Lloyd A. Jeffress dedicated lots of efforts to the search of
a mechanism, by which microsecond time scale events of directional sound difference can be
transformed into a code processed and transmitted by action potentials lasting several microsec-
onds [8]. Historical comments on Jeffress papers are summarized by Cariani in Scholarpedia [4].
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A plausible explanation of the microsecond precision of the MSO circuit describes the neural
computation by leading edges of action potentials and post-synaptic potentials, [17], [29].

In [17], individual steps of signal processing in the superior olive neural circuits have been
investigated. Various synaptic mechanisms have been proposed [18]. Spike timing jitter and
spike variability have been systematically analytically investigated by [14].

In this last paragraph of Discussion section, we should mention briefly rest of scientific papers,
where we found ideas towards the design of the mechanistic model presented here. Article by [20]
discusses interaural phase delays (IPDs; when they exist, their utility is equivalent to that of the
ITDs) and cochlear delays. For cochlear delays, very important is to review the ranges of delays
in comparison to sound periods and classically described excitatory-excitatory and excitatory-
inhibitory responses to binaural inputs in [9]. Paper of Srinivasan, Laback and Majdak cites
current progress of ITD encoding by binaural cochlear implants, this is important for model
validations and applications to studies with hearing aids and electrical hearing, [27].

Conclusions

This theoretical paper is continuation of sound localization precision descriptions in the MSO
[25] and in the LSO [3]. Major novel results here are at least two: 1) analytical estimates of
results obtained previously only by numerical simulation and 2) estimates of auditory parameters
od functions bounding from the bottom and from the top known characteristics of the human
sound localization circuit.
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Figure 1: Schematic MSO circuit with anatomic and connection layouts. This Figure with modifications is
reprinted with permission from the manuscript of [25] to show the numerical model key features.
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Figure 2: Vector strength of auditory nerve spike trains in dependence on sound frequency. X-axis shows
sound frequency in Hz in logarithmic scale and y-axis shows the vector strength. Even though in some nuclei
up the auditory pathway the synchronization can be maintained towards higher frequencies than shown here, the
decrease of the vector strength towards higher frequencies is a general property of all neurons in the auditory
pathway. Red curve shows upper theoretical limit, blue curve shows lower limit, green curve shows limit imposed
by lower firing rate and lower energy of low frequency sound. Black points are data simulated with the use of
point-process spike train generation with the use of the dead time Poisson process. Note that in frequency fS
range from 20 to 200 Hz the lower limit is shown by curve branching to two branches to the left. The upper is the
Boltzmann function fit and the lower is decrease of vector strength at low frequencies due to stochastic response
of high spontaneous rate neurons.
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Figure 3: The shortest JND of ITD detected in the dependence on sound frequency. X-axis shows sound
frequency in Hz in a logarithmic scale and y-axis the shortest JND of ITD in µs. This is a theoretical prediction
based on the analytical model and basic parameter set used in simulations. As in other figures, black line is
obtained by simulation and red and blue lines are respectively upper and lower bounds obtained by an analytic fit.
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Figure 4: JND values in basic parameter set in dependence on the spike timing jitter magnitude. This
plot in semi-logarithmic y-scale shows JND (just noticeable difference) of interaural time difference depending
on variation of the spike timing jitter. Jagged black line: simulated data, solid line: an exponential fit to the
simulations under the assumption of arbitrary time precision in the model circuit, dotted line: a quadratic function
estimate of spike timing precision in a system with addition of noise. Note that in this Figure the exponential
and quadratic fits cross at fS = 1.66 ms. In order to correspond to other Figures showing the upper and lower
bounds of the estimate of stochastic model, the two fits are split into two branches of the same function at
this point of fS = 1.66 ms. For lower x-axis tJ values, quadratic fit is larger than the exponential, and vice
versa. This is indicated by distinctive data-points. (These are circles and triangles; no data-points and squares,
respectively.) Also notice that the curve of the quadratic fit goes through the point [1,1], this is a consequence
of using normalized parameter set.
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Figure 5: Fit of example functions to firing rate slope ITD readout curve. X-axis shows ITD in ms and
y-axis shows corresponding firing rate in action potentials per second. Note that the curve peak is offset from the
origin of coordinates at tITD = 0. Red curve is the Sine density function fit and blue curve is fit by the normal
density function with the variance set to correspond to the known sound main period. Green curve shows the
difference between the red and blue curves.

14


