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Abstract

We study a model of mammalian sound source localization in horizontal plane. Experiments on small rodents
indicate that some mammals use broadly tuned channels of main left and right azimuth directions to perform the
localization task. In human this neural computation is implemented by medial superior olive for low frequency
sounds up to 1500 Hz. The description of the neural circuit implies existence of following parameters. Spike
timing jitter, coincidence detection window length, sound frequency, among other input parameters, influence
the output precision, measured by the just noticeable difference in direction signaled by the circuit. We use
stochastic model with spiking neurons. We construct analytical formulas to estimate results of all numerical
computations used in the model. We explore variations of the parameters mentioned above. Predictions of this
model have straightforward applications in testing and designing stimulation protocols used in hearing aids and
cochlear implants.
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Abbreviations and symbols

fS, sound frequency; FC, critical sound frequency value; ϕ, sound phase; ILD, interaural level difference; IPD, in-
teraural phase difference; ISI, inter-spike interval; ITD, interaural time difference; JND, just noticeable difference,
also difference limen, or threshold; K(.), KC, KS , KX ; A, B, C, . . . proportionality constants; l, sound level,
or rate of point process; LSO, lateral superior olive; MSO, medial superior olive; R(.), RVS, VS, vector strength;
RF , firing rate; σ, standard deviation; tJ timing jitter; t, ∆t, time, time difference; T , TS, TX, sound periods,
time constants.
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1 Introduction

Mammalian sound localization circuits contain two nuclei in the auditory brainstem, the medial
and the lateral superior olive, MSO and LSO. Neurons in these nuclei are the first binaural neurons
in the auditory pathway, they are connected to both ears.

This article presents description of information encoding and neural computation in the MSO
obtained mostly with analytical computations. Using the analytical tools we extend quantitative
results obtained by numerical computations in [Sanda and Marsalek, 2012]. We compare this
analytical MSO description to the LSO description in [Bures and Marsalek, 2013] to arrive to
unified description of neural circuits in the superior olive. We use this description to find maximum
spike timing precision attained by the following two modalities, natural and electrical hearing.
Apparently, low and high frequency sound localization use different neuronal mechanism, because
low and high sound frequencies are encoded by distinctive codes. In a simplified view, low
frequencies are encoded by both spike timing and tonotopic organization, and high frequencies
are encoded solely by the tonotopic organization.

Due to the physical nature of the binaural sound, the MSO neurons process spike timing
differences, Interaural Time Differences, ITDs, in the range of tens of microseconds, 10 µs. The
MSO processes low frequency sounds, in human this is from 20 Hz to not more than 2 kHz. The
LSO processes high frequency sounds, in human this is from 1 kHz up to 20 kHz, with the use
of Interaural Level Differences, ILDs. The overlapping region is known to have a sensitivity drop
at 1.5 kHz [Mills, 1958].

Firing rate, first spike latency and individual spike timings are used in neural system coding,
especially in the auditory pathway. The highest known spike timing precision that has been proven
to be utilized in the mammalian auditory system is the motor response in a bat. In behavioral
experiment, the big brown bat, Eptesicus fuscus catches tidbit larvae of the meal-worm beetle
Tenebrio molitor. The motor precision is in the range of hundreds of nanoseconds, 100 ns, and
auditory separation of ultrasound echoes in the bats sonar sense is in the order of microsecond
units, 1 µs [Simmons et al., 1998]. Comparable performance of the human MSO is in the range
of microseconds, 10 µs and is reported to be improved two- to five-fold after several hours of
training.

Different neural mechanisms are employed in the two nuclei. It has been reported that com-
putation in the MSO is independent on sound intensity [Grothe et al., 2010]. With higher sound
intensity, first spike latency is shortening. Relation of this dependence to ITD and ILD has been
described, yet it is difficult to interpret. [Michelet et al., 2012] have shown the latencies in
experiment on the domestic cat, Felis silvestris.

The LSO and MSO extract location information with the use of different physical cues. The
sensitivity of the system in dependence on the main sound frequency to sounds of different
frequencies should be different.

In the extant human, the MSO is the larger of the two nuclei and contains approximately 10000
- 11000 neurons and the human LSO contains 5600 neurons [Moore, 2000]. As the loudness
change discrimination implementation is much simpler that implementation of microsecond time
delay in sound generation and processing, most of current auditory technology works as if the
more important of the two nuclei were the LSO in Homo sapiens.

We have previously studied parameter free models of human sound localization. Current
development of binaural cochlear implant technology enables to stimulate auditory periphery
with rich repertoire of patterns. Better understanding to the MSO mechanisms will help to
improve electrical hearing.
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The range of sound frequencies processed in the MSO circuit is limited to the low frequency
band. In human, where audible sound frequencies range from 20 Hz to 20 kHz, this low frequency
band spans from 20 Hz to 1.5 kHz. Moreover, in the marginal values of this interval, performance
of sound azimuth discrimination is worse. It is generally agreed that the main reason, why the
workings of the MSO circuit deteriorate towards higher frequency is lowering of the synchroniza-
tion of spike trains in the circuit with the sound source phase. The synchronization between two
corresponding series of point events can be expressed as a discrete formula of vector strength,
defined below in equation (1).

2 Methods

2.1 Preliminaries

Our procedures are mostly in using computational models, experimental data and statistical
methods. Here we list several assumptions used in the paper. In any model of ITD based
azimuth discrimination, time differences have to be computed with high accuracy in the range of
tens of microseconds.

(1) For single MSO neuron model physical constants, especially time constants see [Toth and
Marsalek, 2015]. In the single point neural model, membrane time constants are comparable to,
or lower than 1 ms. These time constants govern neural spikes. They can capture time events in
the range of microseconds or even tens of nanoseconds, as it has been shown elsewhere. (2) For
the synaptic machinery, see [Toth and Marsalek, 2015] as well. (3) For the ergodic assumption
see [Sanda and Marsalek, 2012], [Toth et al., 2018]. The basic set of parameters is shown in
Table 1.

2.2 Model of the MSO neural circuit

Our model MSO circuit is based on connected phenomenological neurons. Input sound to left
and right sides is transformed by the auditory periphery module into spike trains. Spikes in these
trains are point events, only spike times matter and the details of spike numerical implementation
do not make any differences in model output. These spike trains converge and diverge into higher
order neurons. They are relayed from the auditory nerve and cochlear nucleus through the medial
and lateral nuclei of trapezoid body up to the neurons of medial superior olive, which are first
binaural neurons. Output of these neurons is the azimuth signal encoded in a spike train.

2.3 ITD readout curve

Let us have a monotonous function with firing rate as an input, which outputs azimuth. We will
call it the ITD readout curve. In the paper by [Sanda and Marsalek, 2012] this curve is constructed
by curve fitting to simulated points. Here we construct the curve based on assumption that the
main frequency of sound input exist, is unique and is known. In addition to this known frequency,
other parameters of the readout curve are set to make the fitting well posed and to obtain correct
position of the curve maximum.
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2.4 Vector strength

The vector strength definition is as follows, as it is used for example by [Goldberg and Brown,
1969]. Let us have sample spike phases ϕi, i = 1, 2, . . . , N relative to phases of a given input
master periodic function, which does not enter the formula. The periodicity of tones making up
speech is a perfect example of such stimulus. Discrete sum vector strength of sample ϕ1, . . . , ϕN

is defined as

RVS(ϕi) =
1

N

√√√√( N∑
i=1

cosϕi

)2

+

(
N∑
i=1

sinϕi

)2

. (1)

2.5 JND and ideal observer

A higher variability of firing leads to a lower precision of the rate code. Intuitively, if a repeated
presentation of the same stimulus evokes each time different spike count, then to distinguish
between two different stimuli, the associated spike count change must be larger than the spike
count variability. This way we determine the Just Noticeable Difference, JND of the rate code.
In other words, this is the precision of rate coding.

We will ask whether it is possible to distinguish between two random processes with rates l1
and l2, l2 > l1. If we count events in a given counting window, we get counts n1 and n2. The
probability that the observer obtains a result that l2 > l1 equals to the probability that n2 > n1.
Let us assume that the random variables ni, i = 1, 2, . . . , have probability distributions p(ni)
with means µi and equal standard deviation σ. A detection distance is then defined [Tanner Jr.,
1961] as

d′ =
µ2 − µ1

σ
. (2)

This definition expresses the fact that the larger is the variance of the spike count, the worse
is the detection capability. In psychophysics, a threshold value is commonly defined as that value
for which the percentage of correct answers equals 75%. In our case, the examined value is the
just-noticeable change of firing rate, ∆l = l2 − l1. Assuming that both p(n1) and p(n2) are
Normal (Gauss) distributed, the 75% probability of n2−n1 > 0 corresponds to d′ = 1. To obtain
the JND of firing rate, we scale the detection distance with ∆l and put δ′ = d′/∆l. Then, the
JND of firing rate is

∆lJND = 1/δ′ =
l2 − l1
µ2 − µ1

σ. (3)

3 Results

We investigate how circuit output and overall performance depend on sound frequency and sound
intensity. All Figures show sample data of numerical simulation as black lines, lower estimate of
data as blue lines and upper estimate of data as red lines.

Figure 1 shows how vector strength RVS lowers towards higher frequencies, as it can be
observed in the numerical module of the auditory periphery consisting of auditory nerve and
cochlear nucleus. Vector strength cannot be larger than 1. The prevailing majority of neurons
in the auditory pathway has vector strength spike train statistics sigmoidally dropping towards
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higher sound frequencies as it is in this example. In this figure, data originally recorded by [Joris,
1996] at the MSO of domestic cat, were fitted to the sigmoidal curve with the general formula
of the Boltzmann function used in [Marsalek and Lansky, 2005]. The curve fit of vector strength
RVS in dependence on sound frequency FS is:

RVS = (1 + exp(KSfS −KCFC1/2))
−1, (4)

where KS, sound coefficient; KC, critical coefficient; and FC1/2, critical half frequency; are
proportionality constants. Note that at sound frequencies from 20 to 100 Hz, there are two
branches reflecting the existence of two alternative ways how to compute the lower limit, see
Discussion section.

Figure 2 shows the curves limiting the ITD obtained with the basic parameter set in dependence
on the sound frequency. The quadratic curve fit of the JND denoted ∆tJND is:

∆tJND = A(fS − FC1/2)
2 +B, (5)

where upper and lower bound parameters A and B are fitted constants and the other parameters
and variables are as above. See also [Zwislocki and Feldman, 1956]. Analogously to Figure 1,
sound frequencies from 20 to 100 Hz exhibit higher spread between lower and upper limits, as
the fitting method (quadratic fit) is the same for both limits.

Figure 3 shows how the JND of ITD depends on timing jitter magnitude tJ. There are several
time constants, which are defined in relation to physical properties of spatial sound processing.
Critical timing jitter is lower estimate of timing jitter captured by spike train of typical mammalian
neuron, TJC = 0.2 ms. Normalized value timing jitter TJN = 1 ms is the value of timing
jitter normalized in relation to the output JND with respect to average firing rate. Optimal value
timing jitter TJO = 1.66 ms is result of crossing two fits described below.

Simulations show that with lowering timing jitter the circuit output is virtually more and more
precise. Yet, when the jitter is lower than critical value TJC, determined by intrinsic noise, duration
of coincidence detection window, and by other time constants, the precision lowers again. The
two curves fitted to the simulation are:

1. fit of exponential function to simulations, red curve:

∆tJND = exp(A1(tJ −B1)) − C1, (6)

where A1 = 1.9, B1 = 1.25 and C1 = 0.2 are fitted parameters. This relation is shown
conveniently by the logarithmic y-axis in this figure.

2. Another fit, which also takes into account shot noise in lower jitter values, is to a quadratic
function, blue curve:

∆tJND = A2(tJ −B2)
2 + C2, (7)

where A2 = 2.5, B2 = 1, C2 = 1. There is only one parameter sought by numerical simulation.
This is A, fitted to data, as the point (x, y) = (B2, C2) has been chosen to be a unit. This fit is
the normalized fit of the model.

Logarithm of the simulated JND lowers with the exponential curve (6), which is concave
function of sought jitter tJ as the jitter gets lower. The trend towards higher accuracy diverges
from the parabolic fit in equation (7), when jitter reaches critical value between TJC and TJO.

TJC = 0.2 / tJ / TJO / 2ms. (8)
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Beyond that point towards the lower jitter values, the neural circuit cannot function properly, as
too low jitter prevents the interaction of spikes from the left and right side within the coincidence
detection mechanism.

This corresponds to the analytical dependency obtained in [Salinas and Sejnowski, 2000] for
a perfect integrator model with several inputs. The mechanism studied thereof is close to the
MSO neural mechanism studied here. The firing rate changes in dependency on the input spike
timing variability of partially correlated input spike trains.

Figure 4 shows the ITD readout curve. The rising slope of this curve is used as a readout
function yielding the firing rate in dependency on the ITD, which in turn signals the sound azimuth
to the next nuclei of the auditory pathway.

4 Discussion

In this paper we have revisited numerical simulations by [Sanda and Marsalek, 2012]. We have
added analytical estimations to the description of the MSO function which have not been known
previously. Our analytical calculations make possible to derive time constants useful in description
and design of normal human hearing, hearing with hearing aids and cochlear implants. All Figures
contain analytically expressed upper and lower limits in their transfer functions or other functional
descriptions.

Figure 1 contains two lower limit branches at low frequencies. Limiting lower bound by
two different analytical functions (branches) can be understood as uncertainty. A conservative
estimate always considers the lower of the two branches. This uncertainty should be recognized
as one of original results presented for the first time in this paper. Its existence has been proposed
in a thesis by [Bures, 2014]. A comparison of model of low frequency stochastic computation in
the MSO with psychoacoustical experiments is currently in preparation by [Bures and Marsalek,
2020].

Figure 2 depicts a quadratic fit. This fit is after linear regression the simplest analytical
way, how to capture nonlinear and band limited span of human hearing range. Even simplest
polynomial and nonlinear fits might exhibit nontrivial and not that simply tractable outputs, when
subject to neuronal computation [Bures, 2014].

Figure 3 calculations use assumptions about intrinsic noise [Bures, 2014]. The simulation
data have been obtained by arbitrary precision calculation. Any neural recording cannot reach
this precision due to the internal noise of both neurons and recording electronic. In order to
capture this property, we have used both exponential and quadratic fits. When we attempt to
use them as upper and lower bounds, we notice that they exchange their order in region close to
the optimal jitter value. In accordance with other Figures in this paper we use color coding for
the upper and lower bound and different branches of the two fits are denoted by different data-
points. In other words, at the lower jitter values the two estimates exchange their ordering. This
is the choice of the quadratic fit to obtain a normalized bound together with other data-points.
Numerical simulation with the basic set of parameters at x = 1 ms lies beyond this point, but
close to the exponential fit.

Figure 4 contains better fit of the Sine function, as compared to [Sanda and Marsalek, 2012].
As lower bound we can also use circular Normal density function, the difference is negligible,
not shown [Toth et al., 2018]. Comparison of time constants and sound periods in the model
presented here will answer a tentative question: What is the highest slope of the ITD interpolation
curve, such that it gives the resolution of 4◦, angular degrees, in the ITD = 0 direction? This
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slope is more steep in higher frequency sounds, its maximum is attained in maximum frequency
of the MSO circuit operation, around 1 kHz [Marsalek and Lansky, 2005].

Towards the analytical descriptions it is important to note that other periodic functions can
be used as the ITD readout curves. In [Toth et al., 2018] we have compared the Sine function
with the circular Beta density, and other alternative functions. To impose periodic and infinite
boundaries to the problem, regular Normal density and circular Normal density have been used
and tested in previous versions of our model. No differences between these densities with proper
parameters have been shown by common statistical tests when testing differences between two
probability densities, ibidem.

[Franken et al., 2014] use recorded spike trains of several nuclei in the MSO neural circuit
to demonstrate that coincidence detection is an essential part of the neuronal arithmetic [Bu-
res, 2012] executed by the neural circuit. These are simulations combined with experimental
description of MSO workings in line with our concepts and coincidence detection theories.

Another MSO model, already studied in 2005 is: [Zhou et al., 2005], this is a great example
of simplistic model, motivating the description presented in this paper. For discussion of neural
coding in the auditory nerve, cochlear implants and MSO see [Kerber and Seeber, 2012].

Our investigation of quantitative properties of the superior olive neural circuit is also motivated
by the three LSO experimental papers, which have detailed methodology applicable to LSO, to
the overlap of sound frequency ranges between the LSO and the MSO; and also to the MSO
range itself; [Joris and Yin, 1995]; [Joris, 1996]; [Joris and Yin, 1998].

Following his notoriously known paper from 1948, Lloyd A. Jeffress dedicated lots of efforts to
the search of a mechanism, by which microsecond time scale events of directional sound difference
can be transformed into a code processed and transmitted by action potentials lasting several
microseconds [Jeffress et al., 1962]. Historical comments on Jeffress papers are summarized by
Cariani in Scholarpedia [Cariani, 2011]. A plausible explanation of the microsecond precision
of the MSO circuit describes the neural computation by leading edges of action potentials and
post-synaptic potentials, [Marsalek, 2000], [Toth et al., 2018].

Starting from: [Marsalek, 2000], authors of this paper investigated individual steps of signal
processing in the superior olive neural circuits. Various synaptic mechanisms have been proposed
[Marsalek and Kofranek, 2005]. Jitter and spike variability has been systematically analytically
investigated by [Kostal and Marsalek, 2010].

In this last paragraph of Discussion section, we should mention briefly rest of scientific papers,
where we found ides towards the design of the mechanistic model presented here. Article by
[Michelet et al., 2012] discusses interaural phase delays (IPDs; when they exist, they are equiv-
alent to the ITDs) and cochlear delays. For cochlear delays, very important is to review the
ranges of delays in comparison to sound periods and classically described excitatory-excitatory
and excitatory-inhibitory responses to binaural inputs in [Joris et al., 2006]. Paper of Srinivasan,
Laback and Majdak cites current progress of ITD encoding by binaural cochlear implants, this
is important for model validations and applications to studies with hearing aids and electrical
hearing, [Srinivasan et al., 2018].

Conclusions

This theoretical paper is continuation of sound localization precision descriptions in the MSO
[Sanda and Marsalek, 2012] and in the LSO [Bures and Marsalek, 2013]. Novel results are
two: 1) analytical estimates of results obtained previously only by numerical simulation and 2)
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comparison of natural and electrical hearing modalities and demonstrating what is the maximum
timing precision which can be attained by the two modalities.
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Figure 1: Vector strength of auditory nerve spike trains in dependence on sound frequency. X-axis shows
sound frequency in Hz in logarithmic scale and y-axis shows the vector strength. Even though in some nuclei up the
auditory pathway the synchronization can be maintained towards higher frequencies than shown here, the decrease
of the vector strength towards higher frequencies is a general property of all neurons in the auditory pathway. Red
curve shows upper theoretical limit and blue curve shows lower limit. Black points are data simulated with the
use of point-process-spikes train generation with the use of the dead time Poisson process. Note that in frequency
fS range from 20 to 100 Hz the lower limit is shown by two curves, the upper is the Boltzmann function fit and
the lower is decrease of vector strength at low frequencies due to stochastic response of high spontaneous rate
neurons.
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Figure 2: The shortest JND of ITD detected in the dependence on sound frequency. X-axis shows sound
frequency in Hz in a logarithmic scale and y-axis the shortest JND of ITD in µs. This is a theoretical prediction
based on the analytical model and basic parameter set used in simulations. As in other figures, black line is
obtained by simulation and red and blue lines are respectively upper and lower bounds obtained by an analytic fit.
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Figure 3: Just noticeable difference values in basic parameter set in dependence on the jitter magnitude.
This plot in semi-logarithmic y-scale shows JND (just noticeable difference) of interaural time difference depending
on variation of the spike timing jitter. Jagged black line: simulated data, solid line: an exponential fit to the
simulations under the assumption of arbitrary time precision in the model circuit, dotted line: a quadratic function
estimate of spike timing precision in a system with addition of noise. Note that in this figure the exponential and
quadratic fits cross at fS = 1.66 ms. In order to correspond to other figures showing the upper and lower bounds
of the estimate of stochastic model, the two fits are split into two branches of the same function at this point of
fS = 1.66 ms. For lower x values, quadratic fit is larger than the exponential, and vice versa. This is indicated by
distinctive data-points. (These are circles and triangles; no data-points and squares, respectively.) Also notice that
the curve of the quadratic fit goes through the point [1,1], this is a consequence of using normalized parameter
set.
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Figure 4: Fit of example functions to firing rate slope ITD readout curve. X-axis shows ITD in ms and
y-axis shows corresponding firing rate in action potentials per second. Note that the curve peak is offset from
the origin of coordinates at tITD = 0. Red curve is sine function fit and blue curve is fit by the Normal density
function with the variance set to correspond to the known sound main period. Green curve shows the difference
between the red and blue curves.
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Parameter Symbol Units Typical Value Ranges

Timing Jitter tJ, σ ms 1 0.125 - 8
Window of Coincidence Detection wCD ms 0.6 0.15 - 1.5
Sound Frequency f Hz 200 40-1600
Shortest Perceptual Time TPT ms 20 20 - 80

Table 1: The basic set of parameters.
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