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Abstract

Interaural level difference (ILD) is one of basic binaural clues supporting the spatial localization
of a sound source. Due to acoustic shadow cast by the head, a deviation of a sound source from
the medial plane results in an increased sound level at the nearer ear and a decreased sound level
at the averted ear. In mammalian auditory brainstem, the ILD is evaluated by a specialized
neuronal circuit, comprising particularly the binaural neurons in the lateral superior olive (LSO)
which receive excitatory projections from the ipsilateral side and inhibitory projections from the
contralateral side. As the sound level is encoded predominantly by neuronal discharge rate, the
principal function of LSO neurons is to estimate and encode the difference between discharge
rates of the excitatory and inhibitory input. However, the exact mechanism of this operation
is not known; furthermore, it is not clear how the evaluator attains the remarkable precision of
ILD assessment observed experimentally. We employ a probabilistic model and complementary
computer simulations to explore how various properties of the system affect the just noticeable
differences (JND) of ILD. Introducing a concept of an ideal observer, we assess the lowest
possible JNDs of ILD depending on the statistics of interacting spike trains, overall firing rate,
detection time, number of converging fibers, and finally on the evaluation mechanism itself. The
results show that the JNDs of ILD strongly rely on the precision of spike timing, however, with
an appropriate parameter setting, the lowest theoretical values are similar or better than the
experimental values. Furthermore, the mechanism based on excitatory-inhibitory detection of
coincidence may give better results than ideal subtraction of firing rates.

1 Introduction

Mammals, including humans, use the difference in sound levels at the ears (interaural level
difference, ILD) as a clue for the spatial localization of the sound source [?, ?]. The detection
and coding of the ILD are supported by the cells in the lateral superior olive (LSO) that scale
their response magnitude according to the ILD [?]. The LSO neurons are innervated from
both ipsi- and contralateral loci, receiving information on sound intensities in both ears encoded
predominantly by means of the instantaneous firing rate [?, ?]; their task is to evaluate the input
spike rates and translate their difference (induced by the ILD) to the output discharge rate.

The LSO cells receive ascending excitatory inputs from the ispilateral cochlear nucleus (CN)
and inhibitory inputs coming from the contralateral CN via the medial nucleus of the trapezoid
body [?]. The mean number of excitatory and inhibitory afferents terminating on an LSO neuron
is 9.6 and 8.2, respectively [?]. Projections to LSO neurons may originate either in bushy cells
in the ipsi- and contralateral CN [?, ?, ?] or in planar multipolar cells in the ipsilateral CN
[?, ?]. The former pathway preserves precisely the timing of spikes in the auditory nerve (AN)
– the inputs of this origin (both excitatory and inhibitory) are thus nearly identical to the AN
activity. The major domain of LSO operation lies in the high frequency band, where the AN
activity does not phase-lock to the stimulus waveform and the spike trains resemble rather a
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Poisson random process [?]. On the contrary, the planar cells (which serve as another possible
source of excitatory spikes) exhibit a chopping response only weakly related to the instantaneous
AN activity [1]. For these reasons, two cases of LSO inputs are analyzed: random primary-like
activity based on the dead-time Poisson process and the nearly-periodic (chopping) behavior of
planar cells.

Due to the variability of neuronal firing, the correct functioning and precision of the ILD
evaluation is affected by the stochastic properties of the input spike trains [?]. Even if an
ideal subtraction of firing rates is performed, the stochastic nature of inputs brings considerable
uncertainty into the ILD evaluation. On the other hand, it is known from both psychophysical
and neurophysiological studies that the ILD may be assessed with a remarkable precision, the
just noticeable differences (JND) ranging from 0.5 dB to 4 dB [2]. The purpose of the current
work is to bridge the gap between the assumed neural mechanism and psychophysics by assessing
the theoretical limits of the precision of ILD evaluation depending on various parameters of the
system and by relating the outcomes to the psychophysically observed values. Two models of
evaluation mechanism are considered and compared: ideal subtraction of firing rates (SFR) in a
chosen counting window, and coincidence detection (CD) mechanism with an ideal counter on
its output.

2 Methods

2.1 Just noticeable differences of ILD

A higher variability of firing leads to a lower precision of the rate code. Intuitively, if a repeated
presentation of the same stimulus evokes each time a different spike count, then to distinguish
between two different stimuli, the associated spike count change must be larger than the spike
count variability. Mathematically, the current work determines the JND of ILD (in other words,
the precision of ILD coding) using theoretical tools derived in [?, ?, ?]. We will ask whether it
is possible to distinguish between two random processes with rates L1 and L2, L2 > L1. If we
count events in a given counting window, we get counts n1 and n2. The probability that the
observer obtains a result that L2 > L1 equals to the probability that n2 > n1. Let’s assume
that the random variables ni, i = 1, 2, have probability distribution p(ni) with means µi and
roughly equal standard deviation σ. A detection distance is then defined as

d′ =
µ2 − µ1

σ
(1)

This definition expresses the fact that the larger the variance of the spike count, the worse the
detection capability.

In psychophysics, a threshold value is commonly defined as that value for which the per-
centage of correct answers equals 75. In our case, the examined value is the just-noticeable
change of firing rate, ∆L = L2 − L1. Assuming that both p(n1) and p(n2) are Gaussian, the
75% probability of n2−n1 > 0 corresponds to d′ = 1. To obtain the JND of firing rate, we scale
the detection distance with ∆L and put δ′ = d′/∆L. Then, the JND of firing rate is

∆LJND = 1/δ′ =
L2 − L1

µ2 − µ1
σ (2)

The JND of ILD may be evaluated, e.g., by fixing the contralateral sound level and varying
the ipsilateral sound level. However, the relationship between the sound level at the ear and
the discharge rate at the LSO input depends on many factors (e.g., auditory nerve rate-level
function, RLF). For this reason, we evaluate primarily the just noticeable changes of firing rate
of the excitatory LSO input. The corresponding threshold ILDs are estimated by considering
that the maximum slope of auditory nerve RLFs is on average 5 spikes/sec/dB [?], that means
that an incerase in sound level equal to 1 dB increases mean firing rate by 5 spikes/sec.
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2.2 Model of an LSO cell

We introduce two very simple abstractions of an LSO unit that represent the two ILD-evaluating
mechanisms considered. Similarly as in [?], the cell receives one excitatory and one inhibitory
input and its output results from the interaction of both inputs. The inputs and the output are
modeled as one-dimensional random point processes. For the mathematical analysis, it is not
necessary that the events of these processes be action potentials in the physiological sense; rather,
the events may be regarded as a temporary increase (excitatory) or decrease (inhibitory) of the
probability of an output discharge. The detailed biophysical mechanisms involved in real neural
systems are neglected in order to concentrate on the combinatorial and probabilistic phenomena,
such an approach allows to lower the number of free variables in the model so that the influence
of the individual parameters is more understandable. Nevertheless, the principles explored here
are inevitably embedded in real complex systems; our modeling results set the theoretical bounds
for the precision of ILD coding for the extreme case of ideal observer. Therefore we are also not
interested in the exact timing of individual output events, we only derive the mean and variance
of the output event count in a given counting interval.

As the first model, a cell performing an ideal subtraction of firing rates is introduced. If
nE and nI are the event counts of the excitatory and inhibitory inputs, respectively, in a given
counting window, then the output event-count of this cell equals nSFR = max(0, nE − nI).
Depending on the parameters of the model, the just-noticeable changes of ILD are assessed
according to Section 2.1.

As the second model, a cell performing the coincidence detection is introduced. The details
of this model may be found in [?]; in principle, an excitatory input event may be cancelled by
an inhibitory input event on condition that the inhibitory event arrives simultaneously with,
or within a short time interval τ before, the excitatory event. The inhibitory effects of more
than one inhibitory event do not summate. The output of this cell is given by the uncancelled
excitatory events, these events are counted in a chosen counting window and the mean and
variance of the count is used for the purposes of the assessment of JND of the ILD.

The parameters of the LSO model that are varied during the evaluation are: mechanism of
operation (SFR or CD), length of the counting window (detection time) ∆, and the coincidence
interval τ (only for the CD mechanism).

2.3 Stochastic inputs to an LSO cell

Each afferent LSO input (one excitatory and one inhibitory) is modeled as a random point
process. For reasons explained in the Introduction, we employ two basic classes of inputs: a
primary-like input modeled as a dead-time Poisson process with shifted exponential distribution
of inter-spike intervals (ISI), and a chopper input modeled by a process with a uniform distri-
bution of ISI. Only stationary asynchronous firing with no phase-lock to the stimulus waveform
is considered.

A key parameter which profoundly influences the JND of ILD is the variability of inputs.
The temporal variability of neuronal discharge patterns may be expressed using the coefficient
of variation (CV: standard deviation of ISI divided by mean ISI) or Fano factor (FF: spike count
variance divided by mean spike count over some counting interval). The free parameters of the
input processes that are varied during the evaluation are: ISI distribution (shifted exponential
or uniform), CV, and firing rate (for the excitatory input only).

Besides the inputs consisting of a single random point process, we also considered a possi-
bility of convergence of multiple excitatory and inhibitory fibers at one cell. The corresponding
model input is given by a sum of multiple independent random renewal processes with identical
statistics. The properties of the individual processes are set analogously to the case of a single
point process: the ISI distribution, CV, and firing rate are fixed to appropriate values. The free
parameter which is varied in this case is only the number of converging fibers, c.
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Figure 1: JND depending of the excitatory CV (A), counting window ∆ (B), and on excitatory
firing rate (C).

3 Results

Unless stated otherwise, the parameters used in the simulations were set to the following values:

• excitatory firing rate: 200 events per second

• inhibitory firing rate: 100 events per second

• CV of excitatory fiber: 0.25

• CV of inhibitory fiber: 0.5

• counting window ∆: 200 ms

• coincidence interval τ : 6 ms

3.1 Each input is a single renewal process

To explore the relationship between the JND of excitatory rate and various model parameters,
we start with the most simple case of both inputs being described by a single random renewal
process with a given distribution f(t) of ISI (fE and fI for the excitatory and inhibitory process,
respectively). The results were obtained using numerical simulations in MATLAB environment.

In the case of ideal subtraction of firing rates (SFR), the results show that the JND increases
nearly linearly with increasing CV of the excitatory or inhibitory input (see Fig. 1A), the
distribution of ISI of the inputs does not play a role.

Fig. 1B shows the dependence of the JND on ∆. The length of the counting window ∆
strongly influences the JND – the longer the ∆, the smaller the JND. Explicitly, JND = K/

√
∆,

where K is some positive constant.
In the next experiment, the excitatory fiiring rate was varied between 100 and 2000 events

per second; the inhibitory firing rate was always set to one half of the excitatory rate. In this
case, we have found a dependence inverse to the influence of ∆: given a constant CV of the
inputs, the JND grows with the square root of the input rates (see Fig. 1C). This leads to
a paradox that to keep the JND constant, higher input rates must be accompanied by longer
counting windows.

The second model of ILD evaluation, excitatory-inhibitory coincidence detection (CD), gives
results very similar to the SFR model. For the CD mechanism, however, it is necessary to ensure
that the algorithm really performs subtraction – see [?]. It is noteworthy that the obtained JNDs
may be smaller than those resulting from ideal SFR of the same inputs. An important parameter
is the coincidence window τ : the longer the τ , the smaller the JNDs, see Fig. 2. For comparison,
the JNDs obtained by SFR are shown as well – the line is nearly constant as the coincidence
window τ does not affect the SFR mechanism. The figure does not show JNDs for τ < 5, as
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Figure 2: Comparison of the SFR and CD algorithm: JND depending of the coincidence interval
τ .

for the firing rates used (excitatory rate 200 events per second, inhibitory rate 100 events per
second), the CD mechanism performs subtraction only when τ ≥ 5 [?].

For the first model mechanism (ideal SFR), an exact mathematical description is possible.
A crucial task is to find the mean µ and variance σ2 of number of events n occuring in a window
∆, or, in a more general case, the probability distribution p(n) of the event-count n, given the
distribution of inter-event intervals of the process. The p(n) may be obtained by expressing the
individual probabilities P (n = M),M = 1, 2, . . . . Let T1 be the time from the beginning of
the counting window to the first event occuring in that window, and let Ti, i = 2, 3, . . . , be the
time intervals between the i-th and (i− 1)-th event occuring in the counting window. Then the
probability that n = M is

p(M) = P (n = M) = P

(
M∑
i=1

Ti < ∆

)
− P

(
M+1∑
i=1

Ti < ∆

)
(3)

To express the probabilities at the right side of Eq. 3, we need to get the probability
distributions of sums of inter-event intervals Ti. The distribution of a sum of random variables is
equal to the convolution of the distributions of the individual variables. We know the distribution
of Ti for i > 1 – this is the distribution of the ISI of the renewal process, f(t). However, the
distribution of T1 may be different – we do not know in which instant of the process the counting
window starts and unless the beginning of the window coincides with some event of the process,
the distribution fs(t) of the random variable T1 is not equal to f(t).

The probability distribution fs(t) depends on f(t). If we start counting during the course of
the process, the beginning of the counting window will lie either at the instant of some event, or
somewhere between two successive events. We seek the probability distribution of the interval
T1 between the beginning of the counting window and the first succeeding event. This interval
is certainly non-negative, hence fs(t) = 0 for t < 0. At the same time, T1 can not be larger than
the longest possible ISI given by f(t). This means that the distance T1 can be equal to some t0
only when the inter-event interval T during which the counting started is at least the same or
larger than t0, T ≥ t0. Therefore, fs(t) is proportional to the probability that T ≥ t:

fs(t) =
1

K1
P (T ≥ t) =

1

K1

∞∫
t

f(x) dx (4)

where K1 is set so that
∞∫
−∞

fs(t) dt = 1 (5)
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We can now convolve the distribution fs(t) with an appropriate number of distributions f(t),
and we can rewrite Eq. 3 as

p(M) =
1

K2

∆∫
0

fs(x) ∗ f (M−1)(x) dx− 1

K3

∆∫
0

fs(x) ∗ f (M)(x) dx (6)

where f(x) ∗ g(x) stands for convolution of functions f and g and the notation f (M) stands for
M -fold convolution of funcion f with itself. The normalization constants K2 and K3 are set so
that

1

K2

∞∫
−∞

fs(x) ∗ f (M−1)(x) dx = 1 (7)

and

1

K3

∞∫
−∞

fs(x) ∗ f (M)(x) dx = 1 (8)

The next step is to count the mean and variance of the probability distribution p(n) and use
the tools from Section 2.1 to evaluate the JND of firing rate and the JND of ILD. The results
of the analytical model are shown along with the results obtained by numerical simulations in
Fig. 1.

3.2 Each input is a superposition of independent renewal processes

The above results hold for excitatory and inhibitory inputs each comprising a single random
renewal process with a given ISI distribution. As multiple excitatory and inhibitory fibers may
converge at one LSO cell, such situation was considered by modeling each input as a sum of
multiple independent random renewal processes with identical statistics. Each process then
represents one of the converging fibers.

A superposition of multiple independent random processes results in a process which has
nearly an exponential distribution of inter-event intervals. Hence, a common expectation would
be that the resulting process is close to Poissonian and that the JND would not improve with
an increasing number of converging fibers. However, despite that the superposed processes
are independent and the resulting ISI distribution resembles more and more an exponential
distribution as the number of fibers increases, the JND decreases for an increasing number of
fibers, see Fig. 3A. This behaviour is caused by the fact that despite a nearly exponential
distribution of ISI, the sum of multiple non-Poisson processes is not a Poisson process; it is
not even a renewal process. The stochastic properties of this process differ for different time
scales; in particular, on longer time scales, the superposed process preserves the properties of
the individual component processes [4]. The simulations show that in the case of a renewal
process, Fano factor is roughly proportional to the square of CV (see Fig. 3B). However, if
we sum up multiple processes each having CV equal to, e.g., 0.25, the resulting CV quickly
approaches 1, yet the resulting FF corresponds to the CV of an individual component process
(i.e., FF ∼ 0.252), leading to markedly lower JNDs, see Fig. 3C. Furthermore, as the summary
process is not renewal, the spike counts (and thus also the JNDs) obtained at the beginning of
the process are different from those obtained during the course of the process (see Fig. 3A).
This may have implications for ILD perception: JNDs of ILD may be lower when evaluated
using short tone pips than when using continuous signals.

4 Discussion

DODELANO SEM, DISKUSI NUTNO JESTE NAPSAT
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Figure 3: Convergence of multiple fibers. A: JND depending on the number of converging fibers,
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Concluded, the lowest theoretical JNDs of ILD are similar or better than the experimental
values. However, the LSO cells hardly behave as an ideal detector; a certain worsening of JND
is to be expected. Given that the lowest excitatory and inhibitory CVs are approx. 0.2 and
0.7, respectively [1, 3], then to attain the desired precision, the counting window should be at
least 200 ms long, ca. 10 excitatory and 10 inhibitory fibers should converge at one cell, and the
input firing rates should be kept low. Furthermore, spike timing must be conveyed accurately
from the auditory afferents to the LSO.
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