PATHOPHYSIOLOGY OF THE RESPIRATORY SYSTEM

1 introduction, respiratory insufficiency
 2 spirometric classification, restrictive
 3 and obstructive diseases
 4 ventilation/ to perfusion ratio and
 other amendments

lecture no. 1 RESPIRATORY INSUFFICIENCY and acute (adult) respiratory distress syndrome (ARDS)

P. Marsalek, (with J. Kofranek, E. Necas), one of next lectures also by Z. Humlova

• We use definitions of: Outline

- respiratory gases, hypoxia, polycytemia, etc.
- Introduction
- Patophysiology of respiratory insufficiency type 1 and 2 mechanisms of lower
- $p_aO_{2,}$ and
- p_AO_2 (in our notation it is $p_{art}O_2$ =arterial, and similarly $p_{ALV}O_2$)
- in respiratory diseases
 - alveolary hypoventilation
 - diffusion block
 - pulmonary shunt
- Reactive pulmonary hypertension
- Hyperkapnia in respiratory insufficiency type 2 (global)
- ARDS (acute respiratory distress syndrome)
- Remarks about oxygenotherapy

(notation: p: pressure, C: concentration, F: fraction ...)65

Normal values of respiratory and blood gases

Normal values, definitions

- =760 mmHg=101 kPa=1000 cmH₂O=100%
- STPD Standard Temperature and Pressure, Dry (air), 0/15/20 °C, 101 kPa
- BTPS Body Temperature and Pressure, Saturated (air), 37 °C, 100 % humidity
- Atmospheric CO₂: 300 ppm = 0.03 kPa
- Exhaled CO₂: [4.4 ... 5.2] % = 5.2 kPa
- Atmospheric O_2 : 21 % = 21 kPa
- Exhaled O_2 : 15.3 % = 15.3 kPa
- FiO₂: fraction of inspired oxygen 7 / 65

Climatologic observatory Mauna Loa, in Hawaii,

3,000 m above sea level

(350 ppm at this height can be extrapolated to 500 ppm at the sea level)

RESPIRATORY INSUFFICIENCY

Type I (partial, hypoxemic, low O_2) Type II (global, ventilatory, low O_2 , high CO_2)

RESPIRATORY INSUFFICIENCY

Functions of the respiratory systems are not adequately fulfilled:

- p_{art}O₂ does not attain 12.6 .. 13.15 kPa =
- = 95 .. 100 mmHg
- p_{art}CO₂ may (but not necessarily does) exceed 5.25 kPa = 40 mmHg

RESPIRATORY INSUFFICIENCY $p_{art}CO_2$ may be normal – even decreased while $p_{art}O_2$ will be always decreased (low)

Why it is?: the explanation is in different compensatory possibilities of total lungs to vary pCO_2 and pO_2 in individual alveoli

such possibility is large for pCO_2 but effectively it is lacking for pO_2

RESPIRATORY INSUFFICIENCY

RESPIRATORY INSUFFICIENCY type I (partial), (hypoxemic)

- p_aO₂ does not reach 13 kPa (100 mmHg)
- p_aCO₂ is normal or, often decreased (hypocapnia)

RESPIRATORY INSUFFICIENCY type II (global), (ventilatory)

- p_aO₂ does not reach 13 kPa (100 mmHg)
- p_aCO_2 is over 5.25 kPa (40mmHg = hypercapnia)

Respiratory Insufficiency – Type I

 low p_{art}O₂ because of a respiratory system pathology

 p_{art}CO₂ normal or even decreased (hypocapnia), due to regulation

Four pathogenetic mechanisms of decreased p_{art}O₂

- Total alveolar hypoventilation
- Local alveolar hypoventilation
- Pulmonary shunt
- Diffusion block

(other classification according to etiology is possible...)

p_{ALV}**O**₂ determines **p**_{art}**O**₂ (**C**_{art}**O**₂)

- p_{art}O₂ in the arterial blood is given by p_{ALV}O₂
 value in the particular alveolus
- p_{ALV}O₂ values exceeding 100 mmHg DO NOT INCREASE oxygen content in the blood significantly (see oxygenotherapy)
- p_{ALV}O₂ values lower than 100 mmHg DECREASE oxygen content in the blood significatly

Oxygenotherapy - normal (21 %) O₂ breathing in norm

- normal (21 %) **O**₂
- high (up to 100 %) O_2 $Tro_2 = 10$ breathing in pathol., can be (even higher = hyperbaric)

Total versus Local Alveolar Hypoventilation

- Total alveolar hypo-ventilation = the sum of ventilations of all alveoli is insufficient to eliminate CO₂ produced in the metabolism
- Local alveolar hypo-ventilation = some part of alveoli is hypoventilated while others are hyperventilated – the sum is adequate to CO₂ produced in the metabolism or is even excessive (resulting in hypocapnia)

A₁, A₂ - hypoventilated B – hyperventilated C- normally ventilated alveolus; summary V/Q ratio is OK

The "S – shape" of the oxygen dissociation curve

- The "S shape" form of the oxygen dissociation curve protects against effects of a mild hypoxia in the arterial blood (a low decrease in p_aO₂)
- Respiratory insufficiency may progress rapidly after hemoglobin saturation in the arterial blood decreases below 85 to 80 % because the oxygen dissociation curve becomes steep (vic. circ. ...) 23 /65

Alveolar hypoxia causes pulmonary hypertension

- Alveolar hypoxia (low p_AO_2) shifts pulmonary perfusion to regions with higher oxygen tension ($p_{A}O_{2}$) through vasoconstriction
- The vasoconstriction causes pulmonary hypertension ("reactive" - due to alveolar hypoxia)
- This creates a problem in patients with chronic alveolar hypoventilation (chronic bronchitis, emphysema)
- Chronic pulmonary hypertension leads to hypertrophy and dilatation of the right heart (cor pulmonale)

Pulmonary hypertension on echocardiography

Arterial hypoxia stimulates respiratory centers 1

- Arterial hypoxia (a low p_aO₂) stimulates respiratory centers through activation of peripheral chemoreceptors (glomus caroticum, corpus aorticum)
- This is a fundamental change in control of the lung ventilation which normally depends on CO₂ produced by the metabolism (blood pH is maintained)

Arterial hypoxia stimulates respiratory centers 2

- The fundamental change in control of the lung ventilation in patients with a low p_aO₂ makes them sensitive to oxygen administration
- Total alveolar hypoventilation may be worsened by adminstration of oxygen
- This may lead to a dramatic worsening of hypercapnia and respiratory acidosis

C

Diffusion block

- A widening of the alveolo-capilary lung barrier results in "diffusion block"
- The amount of O₂ and CO₂ transferred between blood and the alveolar air depends on: (Q=DAdC/L)
 - exchange area A (surface)
 - difference in partial pressures (dC, "concentration gradient")
 - diffusion coefficient (D, higher for CO2 compared to O2)
 - diffusion distance, L

Diffusion block – special case of the "Latent Respiratory Insufficiency"

- p_aO₂ may be normal in cases of "diffusion block" (p_AO₂ is also normal)
- To a certain stage of the pathology p_aO₂ may be normal and decrease only during exercise (therefore "latent")
- Respiratory insufficiency manifests only in connection with a more rapid blood flow that occurs during exercise 31 /65

Pulmonary shunt 1

- A fraction of blood passing the lungs DOES NOT get into a gases exchanging contact with the alveolar air.
- This functionally resembles the cardiac shunts causing the "right-to-left" circulatory shunts
- "Pulmonary shunt" refers to the functional analogy, there is no anatomical shunt in the blood circulation

Pulmonary shunt 2

- "Pulmonary shunt" has a devastating effect on p_aO₂ values causing severe hypoxemia highly refractory to administration of oxygen
- Conditions of patients with pulmonary shunts may worsen dramatically when the extent of the shunt is enlarged

ARDS

- ARDS Adult (or Acute) Respiratory Distress Syndrome
- Compare to: (Infant) Respiratory Distress Syndrome - of immature newborn, lack of surfactant

...atelectasis is one of the common effects...

ARDS

Symptoms:

-lung injury of acute onset, within 1 week of clinical insult, with progression of respiratory symptoms -bilateral opacities on chest imaging not explained by other pulmonary pathology (pleural effusion, pneumothorax, cancer, et cetera) -respiratory failure not explained by heart failure or volume overload -decreased arterial P_{art}O₂/ FiO₂ ratio: -mild ARDS: ratio is 201 - 300 mmHg (\leq 39.9 kPa) -moderate ARDS: 101 - 200 mmHg (\leq 26.6 kPa) -severe ARDS: $\leq 100 \text{ mmHg}$ ($\leq 13.3 \text{ kPa}$)

ARDS causes: Sepsis, multiple blood transfusions, pulmonary contusion, aspiration of gastric contents, drug abuse or overdose, burns, pancreatitis, smoke inhalation, pneumonia and near drowning. The inhalation of irritants, chemical warfare agents such as phosgene, chlorine gas and such can also cause ARDS.

ethio-pathogenesis:

Edema and decreased surfactant production may cause whole alveoli to collapse or to be flooded. Loss of ventilation contributes further to the right-to-left shunt in ARDS. As the alveoli contain progressively less gas, the blood in alveolar capillaries is less and less oxygenated, resulting in massive intrapulmonary shunting. Collapsed alveoli and small bronchi do not exchange gases. PaO₂ drops to 60 mmHg (8.0 kPa) ane less despite mechanical ventilation with 100% inspired oxygen.

Effects of pulmonary shunt QS = shunt perfusion, QT = total perfusion, $FiO_2 =$ **Fractional** inspiratory oxygen.

Hypercapnia – Respiratory Insufficiency Type II

- There is only a single pathogenetic cause of hypercapnia (increased p_aCO₂) and this is the total alveolar hypoventilation.
- This is why this type of respiratory insufficiency is sometimes characterized as "ventilatory".

pCO₂ will be in hypoventilated alveoli increased and pO₂ decreased ...

consequently

also in the blood leaving affected alveoli partial pressures of these gases will be adequatelly changed

... also in the blood leaving affected alveoli partial pressures of these gases will be adequatelly changed

accordingly, P_aCO₂ should be increased ... however

after sampling the arterial blood and meassurig P_aO_2 and P_aCO_2 *a little surprisingly* P_aCO_2 may be normal – even decreased (!)

BE AWARE OF THESE HIGH ALTITUDE HAZARDS: ALTITUDE SICKNESS **REGARDLESS OF FITNESS** LEVEL, LIGHTHEADEDNESS" AND DISORIENTATION OFTEN OCCUR AT THIS ELEVATION. YOU MAY FAINT OR UNDER-ESTIMATE OTHER DANGERS. IF YOU EXPERIENCE ANY OF THESE SYMPTOMS AVOID PHYSICAL EXERTION AND BREATHING TOO SLOW AND TOO SHALLOW. EXERCISING CAUTION, RETURN TO A LOWER ELEVATION. IF SYMPTOMS DO NOT SUBSIDE. SEEK MEDICAL ASSISTANCE. LIGHTNING IF A STORM APPROACHES. TAKE SHELTER IMMEDIATELY OR CROUCH LOW WITH ONLY YOUR FEET IN CONTACT WITH THE GROUND. ONE OF THE SAFEST PLACES IS INSIDE A VEHICLE. HYPOTHERMIA STAY DRY, WEAR A COAT AND HAT.

Effects of Altitudes higher than 2000 m/ 6500 ft Above sea level, Ambient press < 80 kPa 43 / 65

Type I or Type II "Respiratory Insuficiency"?

High Altitude Hypoxia

HIGH ALTITUDE BRAIN EDEMA

END OF THE LECTURE

Thanks for your attention

Warning: neither the PDF, nor the PPT, PPTX, etc. versions of this presentation are official study materials. For internal use only. Do not distribute.

Contact: Petr.Marsalek@LF1.CUNI.CZ

First Medical Faculty, Institute of Pathological Physiology 63 / 65