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Overall view at the auditory pathway
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Outline FAV 5

Binaural hearing

Medial Superior Olive computes sound azimuth in horizontal plane in low frequencies from
interaural time difference

Lateral Superior Olive computes sound azimuth in horizontal plane in high frequencies from
interaural intensity difference

Cortex

Thalamus is a gateway through which sensory stimulation gains cortical attention and
processing. We can be woken up by strong auditory or visual stimuli.

Neocortical brain areas have common features (six layers) and distinctions (sensory versus
motor, and others).

Sensory areas are typically divided into ‘primary’ and ‘secondary’, but the functional features
of processing order between these remain unclear.

There are 47 distinct Brodmann areas (by Korbinian Brodmann, 1909).

Speech

Distinct areas enable vocalization: 2 major speech centers, sensory and motor.
Inter-hemispheric division of labor: when we sing a song, left (dominant) hemisphere
maintains lyrics and the other (non-dominant) hemisphere contains the melody.

Speech sounds (vowels, consonants) have distinct spectral and temporal features (formants).
There are critical developmental periods for speech acquisition — language understanding
starts before speech production. Developmental period partly closes in puberty.

(Families of Indo-European languages, tonal languages, language origin, structure and
putative universal grammar et cetera. This is fascinating, but it is mostly beyond scope of
these lectures...)

Hearing loss in ageing progresses across modalities and higher loudness in hearing aid often
does not help — is there a need for augmented media? Yes... 3



Outline - Binaural hearing

Introduction: coincidence detectors are part of the circuit

Hypothetically it is possible that coincidence detectors are at
different processing stages

Several models are discussed: with and without synaptic
mechanisms, with and without cochlear mechanics, and other
variants

Outputs of all models are evaluated by the ideal observer
Questions addressed/ open questions

Example: Can modeling phase information improve our
description/ understanding of ‘medial superior olive’/
‘interaural time difference’ mechanisms?

Discussion



Tonotopic organization in cochlea,
function of D.D. Greenwood, 1961
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auditory nerve
phase coding
interval histogram

spikes are in rectified half-
wave probabilities/
synchronizations

x-axis: time, ms;
y-axis: N - Number of spikes

(A) stimulation frequency 412 Hz;
(B) stimulation frequency 1 kHz.

[Rose JE, 1962] 6



auditory nerve
time and frequency coding
time histogram
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X-axis: time; y-axis: neuronal characteristic frequency;
z-axis: spike time histogram

[Kiang, 1965]



Signal discrimination by ideal observer

p(m)

x-axis: firing rates;

y-axis: response probabilities;

- different signals are detected based on
variable responses and different mean values
- JND (just noticeable difference), in dB

- encoded by spikes

[(computational) neuroscience reviews/ textbooks]



Mid-line
Jeffress delay line is the use of

caincidence detectors in birds.
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Sanda and Marsalek, Stochastic interpolation
model...of MSO..., Brain Research, 2012.
(= model without cochlear mechanics)
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Sound frequencies 50, 71, 100, 141, 200, 283 Hz. Mlodel out

put - examples

25

0.3

250

[s/dv] eyes Buuy

ITD [ms]

ITD [ms]

Excitatory - 7
Inhibitory

140}
130}

/dv] eres Buui4

11
[Sanda and Marsalek, 2012]
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Solution to some
questions as to the
construction of the ‘tuning
curve’ can be simple:

to calculate a “read-out”
curve, it just needs to
take inversion function of
a spike time histogram,
pick a proper branch and
a proper function
normalization.

15



Cochlear phase in response to sine input
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Simplified cochlear model by Duke, Julicher, Vilfan, and others 16



Applications of auditory nerve spike train
studies: cochlear implants (Cl) .

Some cochlear implantees have implants on
both sides (mostly in German speaking
countries). How is it with binaural hearing
and horizontal localization?

In tonal languages (Asian, like Chinese) pitch
by Cl is the processing bottleneck. How can
be pitch impression improved in CI? Key
observation: tradeoff localization vs. pitch.
Ambisonics/ holophonics/ augmented/ etc/
digital sound engineering ...

open problems,
interdisciplinary
guestions,
technology
guestions

17
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Outline FAV 5

Binaural hearing

Medial Superior Olive computes sound azimuth in horizontal plane in low frequencies from
interaural time difference

Lateral Superior Olive computes sound azimuth in horizontal plane in high frequencies from
interaural intensity difference

Cortex

Thalamus is a gateway through which sensory stimulation gains cortical attention and
processing. We can be woken up by strong auditory or visual stimuli.

Neocortical brain areas have common features (six layers) and distinctions (sensory versus
motor, and others).

Sensory areas are typically divided into ‘primary’ and ‘secondary’, but the functional features
of processing order between these remain unclear.

There are 47 distinct Brodmann areas (by Korbinian Brodmann, 1909).

Speech

Distinct areas enable vocalization: 2 major speech centers, sensory and motor.
Inter-hemispheric division of labor: when we sing a song, left (dominant) hemisphere
maintains lyrics and the other (non-dominant) hemisphere contains the melody.

Speech sounds (vowels, consonants) have distinct spectral and temporal features (formants).
There are critical developmental periods for speech acquisition — language understanding
starts before speech production. Developmental period partly closes in puberty.

(Families of Indo-European languages, tonal languages, language origin, structure and
putative universal grammar et cetera. This is fascinating, but it is mostly beyond scope of
these lectures...)

Hearing loss in ageing progresses across modalities and higher loudness in hearing aid often
does not help — is there a need for augmented media? Yes... 19



How Do We Collect Information About
Cortex”? We Use Electrophysiology,
Non-invasive and Invasive.




Pyramidal
Neuron

As most neurons,

this cell consists of:

1] cell body

basal dendrites
apical dendrites
principal axon
5] axon collaterals
Synapses use
excitatory neuro-
transmitter:
glutamate.

OB WN,

200 pm

21



CORTICAL MICROCIRCUIT

Neocortex and Other Cortices i’
(Paleocortex, Olfact. Only: 3 Layers,
Archicortex, Olfact. and Hippocampus,

3 or 4 Layers)

6-layer circuit 3-layer circuit Canonical circuit
L1 = =
= : —@
§ e L2/3 -
r ~  »
4 uo A A
A ST y L6 |
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Cortex Consists of Columns as
Functional Units

Area of Cerebral

Cortex Correlates
with the Size and
Surface Area of

0|3k 1% j:wzog AR E38-:48}SP the Mammal
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Skid Time

Unfolded Human Cerebral
Cortex Has Surface Area
As Medium Size Pizza

Says Our Proud
Pastafarian Mission
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Cerebral Cortex and Other Connected Nuclel
- Reticular Formation

- Sensory Projections

- Motor Projections

- Thalamus

- ... Other Sub-Cortical Projections...



Reticular Formation

intralaminarni
jadra thalamu

retikularni formace
stredniho mozku Section through inferior colliculus
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Two Main Speech Centers Within the (Brodmann’s) Areas

— E. Areas of cortex
Primary motor cortex Central sulcus
Supplementary motor cortex

Primary somatic sensory
cortex (postcentral gyrus)

Premotor cortex
Frontal visual cortex
Prefrontal —— Wernicke's area
associative cortex
Parietal, temporal,
Broca’s ared occipital associative
cortex
_ S . i 2 b Primary visual cortex
Orbitofrontal cortex | TR -
Lateral sulcus Higher visual cortex
Limbic association cortex. —— ‘
Cerebellum

Higher auditory cortex

Primary auditory cortex 1-47: Brodmann’s areas

Despopoulos, Color Atlas of Physiology © 2003 Thieme
27



Brodmann Areas (Outer Hemisphere\Part)
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Brodmann Areas (Inner and Outer)
http://www.fmriconsulting.com/brodm
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Inappropriate Way to Explain Connectivity...
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Outline FAV 5

Binaural hearing

Medial Superior Olive computes sound azimuth in horizontal plane in low frequencies from
interaural time difference

Lateral Superior Olive computes sound azimuth in horizontal plane in high frequencies from
interaural intensity difference

Cortex

Thalamus is a gateway through which sensory stimulation gains cortical attention and
processing. We can be woken up by strong auditory or visual stimuli.

Neocortical brain areas have common features (six layers) and distinctions (sensory versus
motor, and others).

Sensory areas are typically divided into ‘primary’ and ‘secondary’, but the functional features
of processing order between these remain unclear.

There are 47 distinct Brodmann areas (by Korbinian Brodmann, 1909).

Speech

Distinct areas enable vocalization: 2 major speech centers, sensory and motor.
Inter-hemispheric division of labor: when we sing a song, left (dominant) hemisphere
maintains lyrics and the other (non-dominant) hemisphere contains the melody.

Speech sounds (vowels, consonants) have distinct spectral and temporal features (formants).
There are critical developmental periods for speech acquisition — language understanding
starts before speech production. Developmental period partly closes in puberty.

(Families of Indo-European languages, tonal languages, language origin, structure and
putative universal grammar et cetera. This is fascinating, but it is mostly beyond scope of
these lectures...)

Hearing loss in ageing progresses across modalities and higher loudness in hearing aid often
does not help — is there a need for augmented media? Yes... 31



THIS PANEL IS A SPECULATIVE ATTEMPT TO CLASSIFY BRODMANN
AREAS DIFFERENTLY

“Binary Trees of Brodmann Areas” and Beyond Brodmann Areas

- Bit 1: (Left) vs. (Right) Hemisphere

- Bit 2 and 3: (Motor/ Frontal Lobe) (Somatosensory/ Parietal L.)

- Bit 2 and 3: (Auditory/ Temporal L.) (Visual/ Occipital L.)

- Bit 4: (Primary) vs. (Secondary) Sensory projection areas

- Bits 5, 6, 7: subdivisions of visual/ sensory areas

- Sensory Domains: Bits 1 and 7: (Left/ Right) vs. (Bottom/ Top) Extensions,
Retinotopy, Spatial Maps

- Bit 8: Temporal encodings: subcortical

- Bit 9: Other modality encodings — Hippocampus (Archi-cortex)/ space
navigation, and so on.

Olfactory cortex and Hippocampus (Archi-cortex), Olfacory Bulb (Paleo-cortex),

Vestibular Cortex (Part of Temporal lobe), Cortical Projections, Remaining senses:
Olfaction, Taste and Touch

32
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Fig.6. Schematic flow diagram of “what" and “where" streams in the auditory cortical system of primates. The ventral “what”-stream is shown in green, the
dorsal "where’’-stream, in red. [Modified and extended from Rauschecker (35); prefrontal connections (PFC) based on Romanski et al. (46).] PP, posterior parietal
cortex; PB, parabelt cortex; MGd and MGy, dorsal and ventral parts of the MGN. 33
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— (. Vocal range and singing range

Fundamental tones of speech
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Formants of Vowels in
Different Languages

— D. Vowel production
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Despopoulos, Color Atlas of Physiology © 2003 Thieme
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Stages of Speech and Language Acquisition

6 mo Beginning of distinct babbling.

1y Beginning of language understanding, one word utterances.

1.5y Dictionary of 30 to 50 words.

2y Dictionary of 50 to several hundred words. Two word
(telegraphic/ short message) speaker.

25y Three or more word sentences. Many grammatical errors and
idiosyncratic expressions. Good understanding of language.

3y Dictionary of 1000 words.

4y Dictionary of 2000 words. Speech competence close to adults.
[Kandel, Schwartz, Jessel, Principles of Neural Science, 1991]

EN: babble, CZ: zvatlat, SK: dzavotat’, GE: plappern,

LAT: balbuties, et cetera...
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Comments On Speech Centres

(1) On rare cases of ‘split brain’ patients, it has been demonstrated
that lateralization of is a purposeful physiological feature

(2) Sensory speech center deficit (= aphasia) is more devastating than
motor aphasia. This is because one does not have a way how to
communicate with a patient affected by sensory aphasia.

(3) There are critical developmental periods in native (and foreign)
language and speech acquisition.

38



Transverse gyrus
of Heschl

sy

Sulcus of Heschl
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Vi)

Left planum pole Right planum
temporale temporale

FIGURE 53-8
The planum temporale is larger in the left hemisphere than in
the right in the majority of human brains (horizontal section in

the plane of the Sylvian fissure). (Adapted from Geschwind and
Levitsky, 1968.]
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TABLE 53-2. Linguistic Dominance and Handedness

Dominant hemisphere (%)

Handedness Left Right Both
Left or mixed handed 70 15 15
Right handed 96 4 0

(Data from Rasmussen and Milner, 1977.)

40
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Fig. 1. Six-month-old infants from America and
Sweden were tested with two sets of vowel stim-
uli, American English /i/ and Swedish /y/. Each set
included an exceptionally good instance of the
vowel (the prototype) and 32 variants that

formed four rings (eight stimuli cach) around the

prototype (8).

Prototypes of vowels
and synthetic vowels
iIn formant space

[P. Kuhl et al, 1992]
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American Infants
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Fig. 2. Results showmg an cffect of language
experience on young infants’ perception of

speech. Two groups of 6-month-old infants, (A)
American and (B) Swedish, were tested with two
different vowel prototypes, American: English /i/
and Swedish /y/. The mean percentage of trials in
which infants equated variants on each of the four
rings to the prototype is plotted. Infants from
both countries produced a stronger magnet effect
(equated variants to the prototype more often) for
the native-language vowel prototype when com-
parzd to the foreign-language vowel prototype.
(Error bars = stzndard error.)

Psycho-physical
responses of 6 month
old infants to vowels of
native and foreign
language

[P. Kuhl et al, 1992]
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- A. Aphasias
Word Word

which is heard which is read

v \

Primary auditory cortex Primary visual cortex

Secondary
auditory cortex
(Wernicke's area)

N v

Area 39

Secondary
visual cortex

Arcuate
fasciculus

Anterior superior
frontal lobe

/

Premotor cortex
(Broca's area)

{

Broca's.2/ 7 L

Basal ganglia, _ area Primary
cerebellum Anterior - auditory -
inferior cortex *
Thalamus frontal lobe -

N\

Motor cortex

~

Spoken word

Wernicke's
rea

Secondary
visual\cortex

Area 39
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Type Spontaneous Repetition of Language Finding words
speech words comprehension
Broca’s aphasia abnormal abnormal normal impaired
Wernicke’s aphasia fluent abnormal impaired impaired
(at times logorrhea,
paraphasia,
neologisms)

Conduction aphasia fluent, markedly normal abnormal,

but paraphasic impaired paraphasic
Global aphasia abnormal abnormal abnormal abnormal
Anomic aphasia fluent normal, normal impaired

but anomic
Achromatic aphasia fluent normal, normal impaired
but anomic
Motor transcortical abnormal normal normal abnormal
aphasia
Sensory transcortical fluent fluent abnormal abnormal
aphasia
Subcortical aphasia fluent normal abnormal abnormal
(transient) (transient)
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Conclusions -
Binaural hearing

Introduction: coincidence detectors are part of the circuit

Hypothetically it is possible that coincidence detectors are at
different processing stages

Several models are discussed: with and without synaptic
mechanisms, with and without cochlear mechanics, and other
variants

Outputs of all models are evaluated by the ideal observer
Questions addressed/ open questions

Example: Can modeling phase information improve our
description/ understanding of MSO (= low frequency encoding)
mechanisms?
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